

Programme

IEPC2019 wants to thank all sponsors for their support

Platin				
ENPULSION				
Gold	AEROSPACE	ariane group	FACHHOCHSCHULE WIENER NEUSTADT	
FOTEC Assetts Faulting of - N Viewer Needland -	SAFRAN	AN ANGEL COMPANY		
Exhibitors				
BUSEK Space Propulsion and Systems	COBHRM	THE LINE	Linde	
ADVANCED DEFENSE SYSTEMS LTD.	Together ahead. RUAG		ACCO	
Promotion Agency		Supported by	partners in	
FFFG Forschung wirkt.	Bundesministerium Verkehr, Innovation und Technologie	WISSENSCHAFT-FORSCHUNG NIEDERÖSTERREICH	ch, education pusiness in one location FRANCE BERRIE	

Overview 05

Tuesday 42

Wednesday 46

Thursday 54

The IEPC is the premier international forum for spacecraft primes, hardware developers, government researchers, academic scholars, and students in the field of electric propulsion.

The programme contains more than 500 technical presentations which cover propulsion device physics and development to on-orbit operation and satellite fleet management. The 2019 IEPC has a rich and diverse technical programme featuring the latest developments and research results in the field, as well as a number of informative and educational events along with technical visits to nearby facilities.

Contact

Dr. Alexander Reissner General Chair ENPULSION → reissner@enpulsion.com

Katrin Fangl Chair of Organizing Committee

FOTEC Forschungs- und Technologietransfer GmbH → fangl@fotec.at

Marcella Sigmund Organisation Aerospace Engineering University of Applied Sciences Fachhochschule Wiener Neustadt GmbH → marcella.sigmund@fhwn.ac.at

Technical Committee

Carsten Scharlemann Käthe Dannenmayer Michael Keidar Paulo Lozano Stéphane Mazouffre Rostislav Spektor Martin Tajmar

Local & Organizing Committee

Alexander Reissner Carsten Scharlemann Katrin Fangl Marcella Sigmund Bogumila Amcha Gerry Schneider Nikolaus Ortner

Design

Science Communications Mag. Bertram Schütz Matthias Nowak

Dr. Alexander Reissner

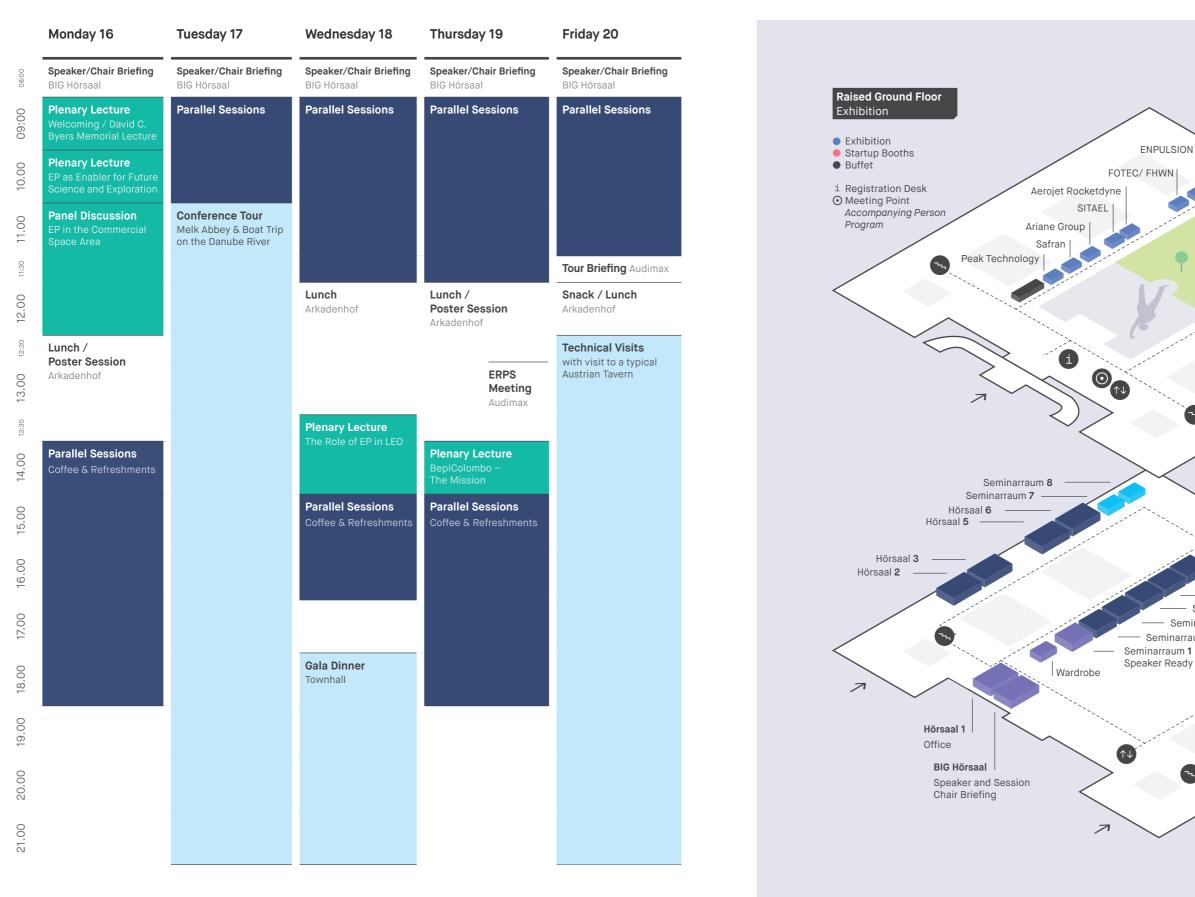
General Chair of IEPC 2019

moving fast.

Today, we are entering an era in which electric propulsion is becoming the dominant choice for such in-space mobility across all applications and it is up to us to define how this era will look. Will we be able to protect economic interests in a world of commercial competition, without sacrificing an open exchange about technological advancements? Will we be able to combine the best of both scientific excellence and industrial capabilities and create robust business models without sacrificing the academic freedom to explore new frontiers?

I believe we will, because in the last 25 years, with the careful guidance of the ERPS, our community has grown into a global family that is based on respect and trust for each other. I believe that this community can handle competition without losing this trust and respect and that it can play a defining role in the new space era without losing its identity.

In a time when everything is moving at breakneck speed, it is our communities and relationships that matter more than ever, and it is up to us, here at the IEPC 2019, to strengthen these relationships. The way we define our community today will shape how the era of electric propulsion will look in the years to come. So let's get to it. And enjoy!


Welcome Note

Welcome to the Era of **Electric Propulsion**


In space, everything is

Any object floating around the earth travels at least 7 kilometers per second. So naturally, mastering in-space mobility is key to the success of every space endeavor, be it the installation of space-based infrastructure for the benefit of earth or the exploration of our solar system. The possibility to move one's assets from one place to another, deploy constellations, remove dysfunctional elements and avoid collisions, autonomously and on short notice, is an enabling factor in unlocking the vast potential space has to offer. I believe that the rapid developments of space-infrastructure we see today are just the beginning of a thriving near-earth economy, enabled by effective in-space mobility solutions.

Schedule / Floorplan

4

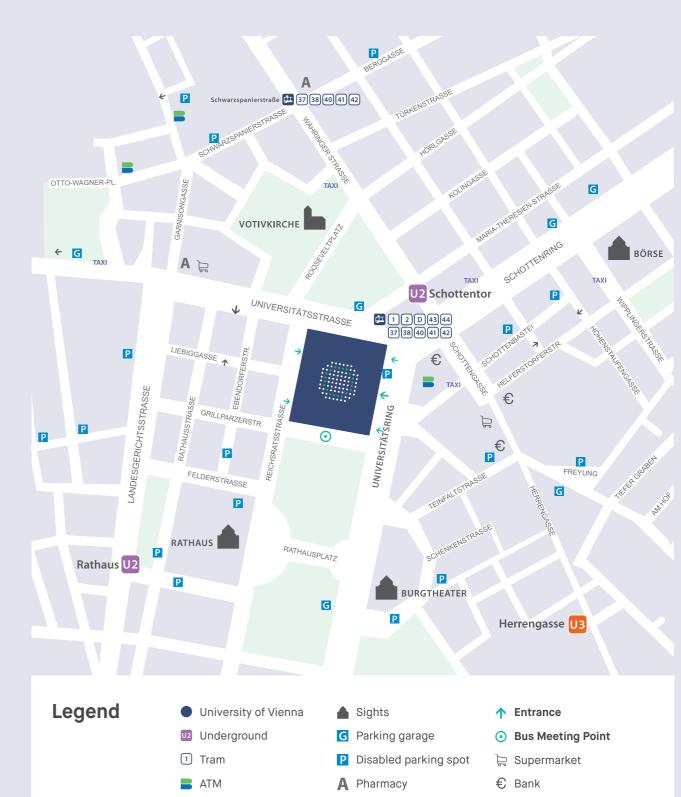
Overview

is proud to support the 36th International Electric Propulsion Conference in Vienna!

We offer state-of-the-art electric propulsion solutions for small and medium satellites with our IFM Nano and IFM Micro ranges based on the proprietary FEEP technology.

OUR SOLUTIONS ARE:

SPACE-PROVEN - 25 thrusters already flying in orbit and another 65 delivered to customers (as of August 2019).


> **TESTED** - we follow rigorous test procedures for thermal resistance, vibration, and performance performed by highly qualified aerospace engineers and technicians in our modern facilities in Wiener Neustadt, Austria.

> SAFE AND EASY TO HANDLE - IFM emitters use indium, a non-toxic, non-reactive and non-radioactive as propellant. As the propellant is pre-loaded and in solid state during launch, there is no need for pressurized tanks and prelaunch loading procedures.

> **MODULAR** - our thrusters are engineered in a modularity approach, with units clustering easily together to form building blocks that can be arranged for various mission profiles

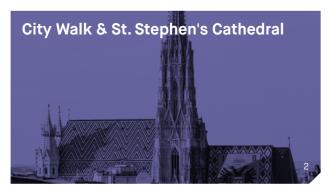
SCALABLE - we have implemented a lean manufacturing process, designed for high rate production while meeting the demands of space product assurance standards.

7

Overview

Social Programme

Registration for tours and events is possible within the registration process. During the conference, ask at the registration desk if space is available.


Photocredits

- 1 ©Universität Wier 2 ©WienTourismus / Christian Stemper
- 3 ©Niederösterreich-Werbung/Michael Liebert
- 4 ©WienTourismus / Lois Lammerhuber
- 5 @WienTourismus / Christian Stemper
- 6 ©WienTourismus/Christian Stemper
- 7 © WienTourismus / Peter Rigaud

Sunday 15th / 18:00 - 22:00 Arcarded Courtyard / University of Vienna Free for attendees accompanying persons: €50,00

Enjoy the get together before the conference in the historic surroundings of the University's Arkadenhof/Arcaded Courtyard. (If the weather is rainy and unpleasant, then the reception will be in the Main Ceremoinial Chamber).

Monday 16th / 09:00 - 12:00 Starting & End Point: University of Vienna Price: €35,00

Explore the old town of Vienna with historic buildings and monuments with the occasional contrast of a few new buildings. Enjoy St. Stephen's wonderful interior with all its fascinating architectural details. At a height of 136.4 metres, St. Stephen's South Tower is an architectural masterpiece of the late Middle Ages. (This program requires good walking shoes and the stamina to walk and stand 3 hours. It involves many stairs as well.)

Tuesday 17th / 11:00 - 22:00 Starting & End Point: University of Vienna Free for attendees students & accompanying persons €120,00

Melk Abbey is one of the biggest and most beautiful European Baroque ensembles. Its splendid architecture is famous worldwide and part of UNESCO's world cultural heritage. The Baroque building situated on a cliff overlooking the Danube, in the Wachau region, ranks as one of Austria's most visited art-historical sites. Enjoy the dinner cruise on the "MS Admiral Tegetthoff" on the way back to Vienna.

Trip to Melk Abbey is available only for conference attendees. Ask at the on-site registration desk if places for accompanying persons might be available.

Wednesday 18th / 09:30 - 12:30 Starting & End Point: University of Vienna Price: €45,00

The morning exercise of the Spanish Riding School offers an insight into the training of the riders and their Lipizzaners. The morning exercise includes relaxation exercises, the refining and perfecting of lessons and the targeted strengthening of muscles. The Imperial Palace was the residence of the Habsburgs for over 600 years and thus the centre of the Holy Roman Empire. Apart from its function as the seat of government and administrative centre, the "Vienna Hofburg" was also the winter residence of the imperial family.

Thursday 19th / 09:00 - 17:00 Starting & End Point: University of Vienna Price: €130,00

Experience Vienna by bus and then explore Schönbrunn Palace (on foot) on the "Selected Highlights Tour". Enjoy your lunch (beverages are not included) at the Schönbrunner Stöckl restaurant in an imperial ambiance. A tour highlight is the breath-taking view of the city from the Giant Ferris Wheel (Note: this particular stop might not be good for people with acrophobia).

Wednesday 18th / 18:00 - 23:00 Town Hall Vienna, Rathausplatz 1, 1010 Free for attendees accompanying persons: €100,00

The IEPC 2019 Award Ceremony in the ambiance of Vienna City Hall's breath-taking ballroom as well as an impressive dance performance will guarantee an unforgettable evening in the heart of the city.

ELIAS MUSIC

Friday 20th / 13:00 - 21:00 Starting & End Point: University of Vienna Free of charge for all

Technopol Wiener Neustadt focuses on technology and research aiming to establish Lower Austria as an innovative high-tech location in Europe. The goal is to connect R&D institutions with high-tech companies and academic education and training institutions.

Visited companies

AAC

C=S1

Lectures / Awards

David C. Byers Memorial Lecture

Monday 16th / 09:00 / Audimax Moderator Roger Myers Presenters Frank Curran / Mike Patterson

In memory of David C. Byers' tremendous impact on the application of electric propulsion, the Electric Rocket Propulsion Society has initiated the David C. Byers Memorial Lecture, or "Byers Lecture", to be given at a plenary session of each International Electric Propulsion Conference (IEPC) starting in 2019. The inaugural Byers Lecture will celebrate Dave's life and accomplishments and will be given by a collection of presenters selected for their knowledge of Dave's immense contributions toward the application of EP. Following an introduction by Roger Myers, Frank Curran and Mike Patterson will review Dave's approach to overcoming the many challenges and resistance to the "new" electric propulsion technology through examples from Dave's long career at NASA and his support of our EP community.

Electric Propulsion in the Commercial Space Era

Plenary Lecture with Industry

Monday 16th / 11:00 / Audimax Moderator Alexander Reissner

How is the rise of commercial space affecting the economics of electric propulsion? What are the expectations of both satellite integrators and operators? How do Heritage Space Customers and New Space Customers see the implementation of industrial processes into electric propulsion manufacturing? What does the emergence of commercially driven business models mean? How do these developments fit with the needs and timelines of scientific missions? Those questions will be discussed amongst representatives from all relevant stakeholders of the changing environment in which electric propulsion is already bound to play a key role in the future.

Electric Propulsion as Enabler for Future Science and Exploration Plenary Lecture with Agencies

Monday 16th / 10:00 / Audimax Moderator Carsten Scharlemann

Representatives from NASA, ESA and JAXA will discuss how electric propulsion is enabling scientific discoveries and exploration in the 21st century. They will present ongoing and planned missions using electric propulsion, as well as major development programs in their respective parts of the world.

Wednesday 18th / 13:30 / Audimax Moderators Rafael Spears / Mitchell Walker Presenters Anton Olshanskii, Alexander Reissner, Albertoni Riccardo, Umair Siddiqui

The announcement of LEO satellite constellations supported by significant industrial and private investors has redefined the satellite communication market. The success of many of the constellation operator financial models hinges on the availability of low-cost, moderate performance, high-volume electric propulsion technology. Electric propulsion start-up companies with university lineage have appeared to meet the new demand. These start-up companies, backed by impressive venture capital investments, join a competitive electric propulsion supplier community. Long before the satellite constellations are successfully demonstrated, constellations operators must make important decisions with respect to the ability of these companies to become sustainable propulsion suppliers. The goal of the panel discussion is to ask the questions that will distill the necessary conditions for the long-term viability of the new entrants to the electric propulsion supplier market. The panel is composed of technical leaders of the new EP companies. The questions and participant selection aim to generate a healthy and meaningful debate with respect to the present and future role of EP for small satellites. The panel is of interest to the EP community and space investment community because it will provide fascinating insights into the unique dynamics of the LEO supply chain.

BepiColombo -**The Mission Plenary Lecture**

Best Poster Award for 2019 conference

The International Electric Propulsion Conference Best Poster Award (BPA) is an Electric Rocket Propulsion Society (ERPS)-sponsored award that will be presented at each International Electric Propulsion Conference (IEPC). The BPA is intended to recognize the best current research in the field of EP and, for this, participants will display a visual representation (poster) of their research findings at the Poster Session to be held on Monday 16th from 12:30 to 14:00 and Thursday 19th from 12:00 to 14:00.

Best Paper for 2017

The Best Paper Award is awarded for each conference to all co-authors of the selected paper. This Award recognizes the authors of the paper which is judged to be the best in terms of quality, innovativeness, and significance of the work described. It also recognizes excellence of the presentation.

Kuriki Award for Young Professionals

The "Kuriki Award for Young Professionals" (Kuriki Award) was announced to the Electric Rocket Propulsion Society (ERPS) community in November of 2016 and will be presented at each International Electric Propulsion Conference (IEPC) in honor of Dr. Kyoichi Kuriki's tremendous contributions to the advancement of Electric Propulsion (EP).

Thursday 19th / 14:00 / Audimax Presenter Neil Wallace

The development and qualification of the Electric Propulsion system (EP) for the BepiColombo mission formally commenced in 2008 with the negotiation and award of the EP development contract. In real terms however it started in 1998 with the first designs, prototyping and testing of the 22cm diameter T6 thruster by QinetiQ, in their new Electric Propulsion (EP) laboratory based in Farnborough, UK. Half a career later, BepiColombo was launched from Kourou on an Ariane 5 in October 2018 and the EP system successfully commissioned shortly before Christmas. Now fully operational, the system is in the first phases of its 7 year mission to transfer the spacecraft to the planet Mercury. This presentation attempts to provide a non-technical insight into some of the highs and lows of the development team during the programme, memorable moments and achievements and to serve as an introduction to the subsequent technical papers of the session.

Stuhlinger Medal

The Stuhlinger Medal of Outstanding Achievement in Electric Propulsion is meant to be and remain the highest distinction given by the ERPS in recognition of outstanding technical or leadership contributions in Electric Propulsion engineering, science, technology, education, management, information exchange, or influencing programs that have led to important advancement in the field.

Author and Session Chair Information

Chairs in Index are marked **C** = Chairs start

Speaker and Chair briefing

Every morning during the conference (Monday to Friday), from 08:00 to 09:00, a speaker and chair briefing is offered in the "BIG Hörsaal" (see floorplan on page 5). Authors who are presenting on this day will meet with the chairs of their respective session for a short session briefing. Please attend on the day of your presentation or if you are a chair on that day. Information about the organization of the session and tasks of the chairs will be provided during this briefing. Speakers are asked to provide a very short bio (name and affiliation) to the chairs of their session such that the chairs can introduce them during the session.

Session chair report

All session chairs are asked to complete a session chair report. The report will be provided in each session room prior to the start of the session. More information about the report and the general tasks of the chairs will be provided each morning during the "Speaker and Chair Briefing"

Speakers practicing room

Speakers who wish to practice their presentation may do so in "Seminarraum 1/Speaker Ready Room" (see floor plan on page 7). A sign-up sheet is located on the door of "Seminarraum 1". Please sign up for a 30 minute-slot. In consideration to others, please limit your practice time to a maximum of a 30 minute increment.

Session rooms

Each session room is equipped with a computer/laptop, LCD projector, screen, microphone and sound system. The presenters are encouraged to provide their presentation on a memory stick. If you choose to use your own computer, please arrive well in time before a session to have sufficient margin to test the compatibility of your system with the one provided in the session room. Technical assistance is provided in each session room in case you encounter difficulties.

Radiofrequency Ion Technology – RIT

- > EFFICIENT with the highest lsp
- > VERSATILE with several function modes
- > **MODULAR** with building blocks
- > **PROVEN** in space and with extensive tests

#space**enablers**

ArianeGroup's electric space propulsion expertise is based on the space proven Radiofrequency Ion Technology (RIT). Within this field we produce complete propulsion systems, modules, thrusters and related components. For more information please contact: propulsion@ariane.group

Name A → Z	Monday 1	6	Tuesday 17		Wednesd	ay 18	Thursday 19		Friday 20	
Abrantes, R. J.					09:15	HS3				
Ahedo Galilea, E.							11:15	HS5		
Ahedo, E.					05:15 C	HS3			09:00	HS5
Akhare, D.					17:00	HS2				
Akhmetzhanov, R.							15:15	HS5		
Altmann, C.							09:00 C	HS5		
Andreano. T.	16:00	SR2					00.000	1100		
Andrenucci, M.	14:00 C	SR3								
Andreussi. T.	14:15	SR6	09:00	SR2			17:00	HS3	09:00 C	HS
Andreussi, i.	17:00	SR6	10:45	SR6			17.00	1100	03.000	not
Antypas, R.	14:45	SR5	20.40	onto						
Aoyagi, J.	17:00	SR4								
Arai, Y.	17.00	014					15:30	HS2		
	16:00 0	502			00:00	202	13.30	1102		
Araki, S. Arthur, N.	16:00 C	SR2			09:00	SR2	10:15	HS5		
Ataka. Y.								HS5		
							16:30	HSD	00.45	
Aydin, B. C.					00-00	1100			09:45	HS2
Bai, S.					09:30	HS2	~ ~ ~ ~			
Baird, M.							09:45	SR6		
Delt. I							11:00	SR6		
Bak, J.							10:00	SR6		0.57
Barbier, P.									09:00 C	SR
Bathgate, S.							17:15	HS2		
Battista, F.	16:15	SR6								
Bauer, P.							18:15	HS5		
Baxter, T.							11:15	HS2		
Becatti, G.	14:00 C	HS6	09:45 10:45	HS6 HS6						
Behnke, A.			10.40	1100			09:00	SR3		
Bello-Benítez, E.									09:15	HSE
Berenguer, C.							18:00	HS3		
Berger, M.					09:30	HS6	17:00	HS5		
Blanchet, A.							10:00	HS3		
Blaser, M.					09:15	SR3				
Boeuf, JP.					00120	onto	15:45	SR2		
Boniface, C.	14:45	HS2					09:00 C	SR6		
Bosch, E.	16:00 C	HS2	09:00 C	HS5			00.000	ono		
Bosi, F.	10.000	1102	00.000	1100	11:30	HS6				
0031,1.					15:00 C	HS6				
Bourguignon, E.					10:00	SR3				
Boxberger, A.					10.00	OINO	10:15	SR3		
boxberger, A.							15:00 C	SR3		
Brieda, L.					10:00	SR2				
					15:00	SR4				
Brophy, J.	14:00 C	HS3	09:00	HS3	09:30	HS5		HS5		
Brown, N.							09:15	SR6		
Brown, Z.									10:15	HS
Byrne, M.	18:15	SR2								
Cannat, F.	16:00	HS5	09:45	HS5						
Cao, XF.					10:30	SR2				
Carroll, D.	14:45	SR4								
Caseady	14.15	000	00.00 C	102						

Cassady, J.

14:15

SR3 09:00 C

HS3

Name A → Z	Monday 16	6	Tuesday 17		Wedneso	day 18	Thursday	19	Friday 20
Chan, YA.							10:30 17:15	HS3 HS3	
Chang, L.					09:15	SR4			
Chaplin, V.	14:00 14:15	SR2 SR2							
Charoy, T.							09:00	SR2	
Che, B.	16:00 C	SR4			09:00	HS3			
Chen, J.					16:00	SR2			
Chen, KY.							11:00	HS3	
Chen, X.					15:30	HS6	09:00 C	HS6	
Chenguang, L.							09:30	HS2	
Cho, S.							15:30	SR2	
Choueiri, E.			10:30	HS2					
Ciaralli, S.	16:00 C	HS5			09:15	SR6			
Cichocki, F.					09:15	HS2			
Clark, S.							16:00	HS6	
Collins, A.			09:00	SR5					
Cong, Y.							09:30	SR3	
Conversano, R.			10:00	SR6					
			10:15	SR6					
Coral, G.					11:00	SR4			
Correyero Plaza, S.					10:00	HS2			
Courtney, D.	16:45	SR5	09:00 C	SR5	16:45	SR5			
Cretel, C.			10:45	HS2					
Crofton, M.	18:00	HS2					17:15	HS5	
Cui, C.			09:30	HS5					

Name $A \rightarrow Z$	Monday 16		Tuesday 1	17	Wednesda	ay 18	Thursday	19	Friday 20	
Cui, K.			09:30	SR2						
Cusson, S.	15:00	SR2								
	17:45	SR6								
Dale, E.							16:30	SR2		
							17:00	SR2		
Daniels, K.	17:15	SR4								
Dannenmayer, K.			09:00 C	HS2			09:00 C	SR4		
Davis, M.	17:15	SR5								
Daykin-Iliopoulos, A.	16:15	HS6								
Degremont, J.	15:00	HS2								
Demmons, N.	14:30	SR5								
Dietz, C.	15:45	HS2								
Dietz, P.					09:15	HS6				
Dinca, D.					11:00	SR3				
Ding, M.							17:45	SR2		
Ding, Y.							17:15	SR6		
Dobranszki, C.			09:45	SR4						
Doh, G.							10:30	SR6		
Dominguez-Vázquez, A.					09:00 C	SR2			09:45	HS6
Drobny, C.	14:00	SR6			09:00 C	SR2				
	15:00	HS6								
Duchemin, O.	14:00 C	SR6			09:00	SR6				
Eckhardt, D.							09:45	HS2		
Edamoto, M.					15:45	HS3				
Egawa, Y.							17:00	SR6		
Ehresmann, M.	14:30	HS2								

Comprehensive Solutions for Space Electric Propulsion

14

Overview

Name A \rightarrow Z	Monday 1	6	Tuesday	17	Wednesd	ay 18	Thursday	19	Friday 20)
Eichhorn, C.							10:00	HS5		
Elias, PQ.									09:30	HS3
Fajardo, P.							09:45	SR2		
Fazio, N.			09:15	HS5						
Feili, D.	14:45	SR3	09:00 C	HS5						
Ferrato, E.	14:45	SR6								
Filleul, F.					16:00	HS6				
Frieman, J.	18:00	SR2								
Fruchtman, A.									10:15	HS6
Funaki, I.	16:15	SR2					09:00 C	SR6		
Furukawa, T.					15:00	HS2	15:00 C	HS2		
Furuya, R.					15:45	HS6				
Gabriel, S.					09:00 C	HS6	09:00 C	HS5		
Gallud Cidoncha, X.							15:45	HS2		
Garcia, V.	15:15	SR2								
	16:00 C	HS6								
Garrigues, L.					09:00 C	HS6	09:00 C	HS5		
					15:00	HS6	10:15	SR2		
Geng, J.	15:00	HS3								
	17:45	SR4								
Georgin, M.							09:00	HS6		
							10:15	HS6		
Gessini, P.					16:30	HS2				
Gilpin, M.					09:00	SR5				
Glascock, M.	16:00	SR4	09:00 C	SR4						
Glogowski, M.	14:30	SR3								

Name A → Z	Monday 1	6	Tuesday	17	Wednes	day 18	Thursda	iy 19	Friday 20
Goebel, D.	14:00 C	HS6	10:30	HS6					
Gole, H.							09:00	SR6	
Gómez, V.							17:00	HS2	
Gondol, N.					09:45	SR6			
Gonzalez del Amo, J.	14:00 C	SR3					10:00 15:00 C	Audimax SR3	
González, J.							16:00	HS2	
Gray, H.							15:30	HS6	
Gray, T.							15:00	SR6	
Grimaud, L.					10:15	SR5	09:00 C	HS3	
Guarducci, F.	18:00	HS5							
Guerrero, P.					10:00	HS6	17:30	SR2	
					10:30	HS6			
Guglielmi, A.							17:15	SR2	
Guo, Y.					16:30	SR5			
Gurciullo, A.	15:30	SR2			10:15	HS6			
Habl, L.							10:45	HS5	
Hakateyama, W.	17:15	HS2							
Hall, K.					09:15	HS5			
Hall, S.	14:00	HS6							
	14:15	HS6							
Hallouin, T.							09:00 C	SR2	
							15:00	SR6	
							15:45	SR6	
Ham, R.	16:30	HS6							
Hamada, A.			10:15	HS2					

16

Overview

Name A \rightarrow Z	Monday 1	Monday 16		Tuesday 17		Wednesday 18		19	Friday 20	
Hang, G.									09:15	SR5
Haque, A.	14:15	HS2								
Hara, K.							09:30	SR2	09:15	HS5
							11:15	SR2		
Harmansa, N.							15:45	HS3		
Heidemann, R.			10:30	SR6			09:00 C	SR2		
Henning, T.	15:15	SR5								
Hepner, S.							09:00	HS3		
Herdrich, G.							09:00 C	SR3	09:45	HS3
							09:45	SR3		
Herman, D.			09:45	SR6						
Hess, S.					11:00	SR2				
Hey, F. G.	14:00 C	HS2	17:30	HS2						
Hiraka, K.	14:15	SR4								
Hiroike, N.	14:15	HS5								
Hofer, R.	17:30	SR6	09:00 C	SR2						
Hoffman, D.					10:30	HS5				
Horisawa, H.							15:30	HS3		
Hruby, V.	14:00 C	HS2					09:15	SR4		
	16:00 C	SR5								
Hsu, A.	16:00 C	SR5								

Name A \rightarrow Z	Monday	16	Tuesday 17		Wednesday 18		Thursday 19		Friday 20	
Hu, Ya.									09:00 C	HS6
Hu, Yo									09:30	HS5
Huang, W.	18:45	SR2								
Hugonnaud, V.					09:00 C	SR5				
Huh, H.					16:15	SR5				
Ichihara, D.							10:45	HS3		
Ide, S.							16:00	SR3		
Ikeda, T.					10:45	SR6				
Inaba, T.	15:15	SR4								
Ito, G.					09:30	SR2				
Ivanov, S.					15:45	HS2				
Jackson, J.							16:15	HS3		
Jakubczak, M.			09:15	SR2						
Jansen, F.	15:00	SR3								
Jarrige, J.			09:15	HS2						
Jia-Richards, O.	14:15	SR5								
Jia, Y.					15:00	HS5	10:30	HS6		
Johnson, I.							11:00	HS2		
Jorns, B.	14:00	SR6			15:15	SR5				
Junker, J. E.					09:00	SR3				

SHAPING THE FUTURE

aerospace.org 🛛 🕤 🕞

EXPANDING THE FRONTIERS OF SCIENCE AND **EXPLORATION**

NEXT-C NASA's Evolutionary Xenon **Thruster - Commercial**

Overview

Name A \rightarrow Z	Monday 1	6	Tuesday	17	Wedneso	day 18	Thursday	19	Friday 20)
Kaganovich, I.									10:45	HS6
Kamhawi, H.	16:00 C 17:15	SR2 SR2	09:30	SR6	15:45	SR6	15:00 C	SR2		
Kang, Q.					11:15	SR3				
Kapulkin, A.	15:00	SR6								
Karevsky, A. V.			09:00	SR3						
Katsonis, K.							17:45	HS3		
Kawashima, R.					15:00	SR2				
Kazeev, M.	14:00 C	SR4	09:15	HS3						
Keerl, S.					09:30	SR5				
Kelly, C.	14:00	HS3								
Kempkens, K.							15:45	HS6		
Kerber, T.	14:30	SR2								
Khmelevskoi, I.							11:00	SR6		
Kim, M.							16:45	HS3		
Kim, V.					10:15	SR6				
Kinefuchi, K.							10:15	SR6		
Kitaeva, A.							09:00 C	SR3		
							15:45	SR3		
Kolbeck, J.	15:00	SR4							09:45	HS5
	16:00 C	SR4								
Komarov, A.										
Komurasaki, K.			09:00 C	SR2						
Kottke, N. G.	15:15	HS6								
Kozhevnikov, V.					15:00 C	HS5	15:30	HS5		
							15:45	HS5		
Kramer, A.					10:45	SR5				

Name A → Z	Monday 16		Tuesday 17		Wednesd	ay 18	Thursday 19		Friday 20	
Krejci, D.	16:00 C	SR5			11:15	SR5				
					15:00 C	SR5				
Kristinsson, B.	14:00 C	SR5			15:15	HS3				
Kronhaus, I.							10:30	SR2		
Kubota, K.					15:15	HS6				
Kumar, H. S.					10:45	HS2				
Kuninaka, H.	10:15	Audimax								
La Rosa Betancourt, M.							16:45	SR3		
Lafleur, T.							11:00	HS5	09:00 C	HS5
Lascombes, P.	15:15	SR3								
Laterza, M.	16:30	SR4			15:15	SR2				
	18:00	SR4								
Laube, J.					10:45	SR2			09:00 C	HS3
Laufer, P.	17:30	HS6								
Lee, D.					09:30	SR6				
Leiter, H.	14:00 C	HS5			09:00 C	HS5	09:00	SR4		
							16:45	HS5		
Lenguito, G.	14:00	HS2	10:00	SR3						
Lev, D.	15:30	SR3	09:00 C	SR3	10:15	SR3	09:30	SR4		
Levin, D.	16:15	HS5			15:45	SR5				
	16:30	HS5								
Lewis, R.							16:15	HS6		
Li, W.	14:45	SR2								
LI, X.					15:00	HS3				
Li, Y.							15:15	SR3		
Liang, S.									09:30	HS6
Ling, W. Y. L.	16:45	SR4								
Little, J.	16:45	HS3			09:00 C	HS2				

20

Overview

Name $A \rightarrow Z$ **Tuesday 17** Wednesday 18 Thursday 19 Friday 20 Monday 16 Liu, H. 10:15 SR2 09:00 C SR5 HS3 Liu, X. 16:15 SR5 10:00 17:30 SR4 Lobbia, R. 16:30 SR6 09:45 SR2 Lopez Ortega, A. SR2 15:30 16:30 SR2 16:00 HS5 Lovtsov, A. 09:00 C SR5 Lozano, P. 09:00 Lucken, R. HS5 15:15 HS3 Lyne, C. Ma, C. 16:00 SR5 10:45 SR3 MacArthur, J. 10:00 SR5 SR3 HS2 Magarotto, M. 10:30 09:00 HS2 10:00 Mallon, M. 16:45 HS5 09:00 C HS5 Mani, K. V. 10:15 HS2 Markov, A. 15:00 SR6 Marmuse, F. 17:15 HS3 Marrese-Reading, C. 09:45 SR5 15:45 SR2 Martín Ortega, Á. SR2 Martin. R. 15:00 09:45 Martínez Martínez. J. HS5 Masillo, S. 11:15 SR6 10:30 SR5 Massotti, L. 15:00 C SR5 Matlock, T. 15:15 SR6 09:00 C SR6 16:00 SR6 16:30 HS2 Matsunaga, Y. 15:15 HS5 11:00 SR2 Matyash, K. Mazouffre, S. 14:00 C SR2 09:00 C HS6 11:00 SR6 15:00 C SR6 McDonald, M.S. 09:45 HS6 Merino, M. HS3 HS3 14:15 09:00 C 09:45 Micci, M. 16:30 HS3 SR4 15:00 C SR4 SR6 HS6 Mikellides. I. 17:45 SR2 09:00 C 09:00 C Mishra, A. SR6 SR6 SR6 09:00 15:00 C 17:30 HS2 Misuri, T. SR6 SR6 09:30 16:45 15:00 C SR6 17:15 Moloney, R. 09:15 HS3 Monette, M. 16:30 HS3 09:30 SR4 Montag, C. Mooney, M. 15:45 HS6 09:00 C HS2 Morishita, T. 14:30 HS6 09:15 SR5 Mühlich, N.S. Muranaka, T. 11:30 SR2 09:15 HS5 Murayama, Y. 16:15 SR3 09:30 C Audimax Myers, R. Nagamine, K. 16:15 SR6 Nakagawa, Y. 18:00 HS5 SR6 Nakayama, Y. 15:00 C 09:00 HS3 SR6 Nakles, M. 10:45 10:15 Nandyaca, H. HS2 16:30 SR5 Natisin, M.

Name A → Z	Monday 1	6	Tuesday 17		Wednesd	ay 18	Thursday	19	Friday 20	
Nauschütt, B.							09:45	HS5		
Navarro Cavallé, J.					15:30	HS2	16:45	HS2		
Neugebauer, C.	15:15 16:00 C	HS3 HS6								
Neugodnikov, S.			09:45	SR3	09:30	SR3				
Neumann, A.	17:00	HS2								
Neunzig, O.			09:00 C	HS2			10:15	HS3		
Nguyen, T. T. H.					10:00	HS5				
Ning, Z.							09:15	HS6		
Ogunlesi, C.					10:15	SR4				
Oh, D.									09:00 C	HS2
Olano Garcia, A.	17:30	SR2								
Oshio, Y.	16:00	HS3								
Ottaviano, A.									09:15	HS3
Packan, D.					09:00 C	HS3	10:45	HS2		
Pan, R.					11:45	SR2				
Panelli, M.					11:00	HS6				
Pavarin, D.					09:00 C	SR3				
Pedrini, D.					09:00	HS6				
Perales-Díaz, J.	17:30	HS5								
Perez Luna, J.					09:00	HS5				
Peterschmitt, S.							09:00	HS2		
Peterson, P.					10:30	SR6				
					15:00 C	SR2				
Petro, E.	17:00	SR5			16:00	SR5	15:00 C	HS5		

22

Develop Thrusters for GW Detection Mission

Overview

Name $A \rightarrow Z$ Monday 16 **Tuesday 17** Wednesday 18 Thursday 19 Friday 20 Pintó Marín, F. J. 16:00 C HS2 10:30 SR3 Polk, J. HS3 15:45 HS5 15:00 SR4 Polzin, K. 14:00 C 15:00 C HS2 SR4 18:30 Potrivitu, G.-C. 10:00 HS6 HS6 10:15 SR2 Powis, A. 16:15 15:30 Proulx, N. SR6 Quraishi, A. 15:00 HS2 Raisanen, A. 10:00 SR2 Raitses, Y. 16:45 SR2 17:30 SR2 Rakhimov, R. 15:30 HS5 Reeh, A. 17:00 HS5 09:45 HS6 Reeve, S. 09:30 Reissner, A. Audimax 11:00 C Audimax Reitemeyer, M. 09:30 HS6 Ren, J.X. 15:00 HS5 Richards, M. 09:30 SR3 SR4 Robinson, M. 10:00 Roessler, C. 09:00 C SR3 10:15 SR3 15:00 C HS2 Rojas Mata, S. HS3 Romano, F. 15:00 SR4 Romei, F. 09:30 HS2 Rongione, N. 09:00 10:30 HS2 Rosati Azevedo, E. SR6 Ross, J. L. 15:15 HS2 Ryan, C. 16:45 Sammut, M. 14:30 SR4 10:45 HS5 Samples, S. Sánchez-Villar, A. 10:15 HS3 Saravia, M. M. 14:00 C SR6 15:15 SR6 Sarrailh, P. 11:15 SR2 Sasoh, A. 11:15 HS3 Sato, Y. 14:00 HS5 Scharlemann, C. 10:00 C 11:00 SR5 14:00 C Audimax Audimax 14:00 C SR5 Scholze, F. 10:30 HS5 Schönherr, T. 09:00 C SR4 10:00 SR5 15:00 C HS3 Schwertheim, A. HS3 09:30 Seifert, B. 16:00 HS2 09:00 C SR5 SR6 Sekine, H. 09:30 16:15 HS2 Shashkov, A. 16:45 SR2 18:15 SR4 09:15 SR2 Shaw, P. Shen, Y. 10:30 SR4 Sheppard, A. 14:30 HS3 Shimhanda, S. 14:00 SR4

Name $A \rightarrow Z$	Monday 16		Tuesday 17		Wednesday 18		Thursday 19		Friday 20	
Shimamura, K.					16:30	SR6				
Simmonds, J.			09:45	SR2	10:00	SR6				
Skalden, J.					09:00	SR4				
					10:45	SR4				
					15:00 C	SR4				
Smirnov, P.	17:15	HS6								
Smirnova, M.					15:00 C	HS5	16:15	HS5		
Smith, B. K.	10:30	Audimax								
Smolyakov, A.	16:00	SR6							09:00	HS5
									10:30	HS6
Snyder, S.									09:15	HS2
Sommavilla, T.	15:15	HS5								
Sommerville, J.	17:00	SR2								
Song, J.					10:30	HS2				
Song, P.	15:00	SR5								
Spears, R.					13:30 C	Audimax				
Spemann, D.							11:30	HS3		
Staab, D.							10:15	HS2		
Starchenko, A.			09:15	SR3						
Steiger, C.							15:15	HS6		
Stesina, F.					16:15	HS2				
Su, L.	14:30	SR6								
Surminskii, A.					11:30	SR3				
Sutherland, O.									10:00	HS2
Swar, K.	16:15	HS2								
Taccogna, F.							10:45	SR2		
Tachibana, T.					15:45	SR4				
Tahara, H.							15:00 C	SR3		
Tajmar, M.	15:00 C	HS3			09:45	SR5	09:30	HS3		
							09:45	HS3		
Takahashi, K.	14:00 C	HS3			16:00	HS2				
	17:00	HS3								
Takahashi, M.							15:15	HS2		
Takao, Y.	14:00	SR5								

25

Name $A \rightarrow Z$ Monday 16 Tuesday 17 Wednesday 18 Thursday 19 Friday 20 Takegahara, H. 14:00 C HS5 15:15 HS2 Tatsuno, A. Tauchi, S. 09:15 SR3 Taunay, P.-Y. HS6 09:00 HS6 Tavant, A. 10:00 17:45 HS5 Thomas, R. Thompson, S. 16:00 HS6 09:00 C HS6 HS2 Thoreau, P. 09:45 SR5 09:30 Thuppul, A. 10:15 HS3 Tighe, W. HS2 Trescott, J. 15:15 09:00 C SR4 Trottenberg, T. 09:00 C HS3 10:00 HS3 HS5 Tsikata, S. 10:00 Tsuchiya, M. 15:30 SR4 Tsukizaki, R. HS5 09:00 Tsybulnyk, A. 09:45 SR3 Turchi, P. 16:15 HS3 09:00 C HS3 Uchizono, N. 09:15 SR5 09:00 C SR4 Upadhyay, P. P. 15:15 SR4 VanWoerkom, M 18:30 SR2 Vaudolon, J. 16:30 SR6 Vaupel, M. 16:00 SR6 16:00 HS3 Vazsonyi, A. R. 10:45 HS6 Velasco Valencia, R. 09:00 C SR3 17:45 HS2 Viges, E. Villafana, W. 14:00 C SR2 15:45 SR2 Villemant, M. 15:00 SR5 15:15 SR2 Vincent, B. 15:30 SR6 HS2 Wachs, B. 09:15 Wada, A. 16:30 HS2 13:30 C Audimax Walker, M. Wallace, N. 15:00 HS6 09:00 C HS2 Wang, G. 10:00 SR3 15:30 Wang, J. SR5 Wang, Y. 10:45 SR3 15:30 SR6 Wang, Y.-F. 09:00 C SR6 16:00 SR2 Watanabe, H HS6 Wegner, T. 09:15 Wei, L. 09:15 SR2 SR2 15:00 C Weiss, S. 16:00 C SR2 HS3 Wen,X. 15:30 Wijnen, M. 09:30 HS2 Williams, J. 17:45 HS5 Winter, M. 15:30 HS3 15:00 C HS3 Wirz, R. 15:45 HS3 Woods, J. 14:45 HS3 09:00 C HS3 Wright, P. 15:30 SR5 Wu, P. 10:30 SR3

Name A → Z	Monday 16		Tuesday	17	Wednesd	ay 18	Thursday	19	Friday 20			
Yalin, A.			09:30	HS6								
Yamakawa, Y.					09:45	HS2						
					15:00 C	HS2						
Yamamoto, N.							15:00 C	SR2	09:00	HS		
Yamamura, T.					09:00 C	HS2						
Yamasaki, J.					16:30	SR6	15:30	SR3				
Yamashita, Y.	14:30	HS5										
Yang, L.			09:15	SR4								
Yang, W.	15:30	HS6										
Yang, X.			10:00	HS2								
Yi, X.	16:00 C	SR6					16:15	SR6				
Yim, J.					15:30	HS5						
Yokota, S.					16:30	SR6						
Young, J.							10:00	HS6				
							17:30	HS5				
Zarakovskiy, A.	16:45	HS6										
Zhang, Y.							15:00	SR3				
Zhang, Z.			09:00	SR4			17:30	HS3				
Zheng, H.	15:00	HS5										
•	17:15	HS5										
Zhou, C.							16:30	SR3				
Zhou, J.					09:45	HS3						
Zhu, K.					10:15	HS5						
Zhu, X.							09:30	HS5				
Ziemer, J.					11:30	SR5						
Zitouni, B.	15:30	HS2										
	16:45	HS2										
Zolotukhin, D.	16:15	SR4										
Zurbach, S.			09:15	SR6	09:00 C	SR6						

26

Overview

Explore the Poster Sessions at IEPC¹⁹ to get insight into new technologies, current developments as well as different matters regarding Electric Propulsion.

Poster Sessions at the Main Exhibition Site Monday 16th / 12:30 - 14:00 Thursday 19th / 12:00 - 14:00

Material Technology Cathodes, Gimbals A835

Computer Modeling of Non-Emission Electron Source with High Frequency Ionization S. Roshanpour

Resistojets/Arcjets

A132

Study on Low-Power Water-Cooled and Anode-Radiation-Cooled DC Arcjet Thrusters Using HAN and Water Propellants with Special Vaporing Systems H. Tahara

MPD Thrusters

A130

Performance Characteristics of High-Power Steady-State MPD Thrusters with Divergent and Cusp Magnetic Fields Using Permanent Magnets for In-Space Propulsion H. Tahara

A813

Integrated simulation solutions for the plasma and transversal physics in electric propulsion systems M. Kubecka

Global Strategic Investments and Long-Term Planning

A350

Overview of SITAEL Electric Propulsion Developments T. Misuri

Hall Thrusters

A131 Performance Characteristics and Interior Plasma Phenomena of High-Power and High-Specific-Impulse

A334

A490

A570

A587

thrusters

A. Rostek

discharges

T. Charoy

A674

N. Yamamoto

initial ignition stage of a 20mN Hall thruster J. Yizhou

Development of a 200 W Class

Hall Thruster for an Active

Debris Removal System

Fluid simulation of low

frequency oscillations in Hall

2D (axial-azimuthal) Parti-

cle-In-Cell benchmark for ExB

Hall Thrusters for In-Space Propulsion H. Tahara

Low frequency ionization

oscillation model with azimuthal dimension in a Hall thruster J. Bak

A PIC/MCC simulation on the

A716

Study of the electron anomalous transport in a Hall effect thruster using a 2D multi-fluid simulation K. Hara

Ion Thrusters

A194 A Thrust Balance for the MINOTOR ECR Thruster

S. Scharmann

A250 A 3D Hybrid-IFE-PIC-MCC model for the discharge chamber simulation of ion thrusters Y. Cao

A256

2D Particle-in-Cell Simulation of Current Characteristics in Three-Grid Ion Optics A. Sun

A335

Feasibility study of sublimable substance as an alternative propellant to xenon in ion thrusters M. Adachi

A807

Combined optical emission and laser absorption spectroscopy of Xenon gridded ion thruster R. Kozakov

Pulsed Plasma Thrusters

A133

Development of Commercially-Available Electrothermal Pulsed Plasma Thruster Systems for Powered Flight of Micro/Nano-Satellites at Osaka Institute of Technology H. Tahara

A134

Development of the Osaka Institute of Technology 2nd PROITERES Nano-Satellite with High-Power Electrothermal Pulsed Plasma Thrusters for Powered Flight H. Tahara

A135

Research of Debris Removal Systems by Electric Propulsion and Development of the 4th PROITERES Nano-Satellite for Its Practical Space Experiments at Osaka Institute of Technology H. Tahara

A231

Longterm testing and evaluation of the vacuum arc thruster system using multi-element cathodes M. Kuehn

A269

Evaluation of Coaxial Shortpulse Laser-assisted Pulsed Plasma Thrusters K. Sato

A438

Study of two-stage pulsed plasma thruster with special propellant combined ion liquid and resin manufactured by 3D printer J. Saiki

28

Poster Session

29

Innovative Concepts

A201

Design and Construction of a Rotating Magnetic Field, Field-Reversed Configuration (RMF-FRC) Thruster C. Sercel

A286

Investigation of Antenna Current and Regime Transition in Electrodeless Inductive Plasma Generators R. Georg

A414

Numerical Investigation of Ignition in a Novel Positron-Catalyzed Fusion Propulsion Concept L. Brieda

A486

Characteristics of laser sustained plasma using argon and methane for on board laser-based thruster M. Matsui

A568

Metallic Vapor Thruster using Field-emitted Electron Bombardments P.-Y. Chang

A799

Thermal analysis of diode-laser coupled fiber-tip heat source for high-temperature generation T. Matsuo

Thruster Concepts

A162

Studies on Helicon Plasma Thruster and Measurement Methods D. Kuwahara

A416

1-D PIC Model of a Magnetically Enhanced Plasma Thruster M. Minute

A483

Numerical Simulations of a Capacitively Coupled RF Micro-Thruster A. Popoli

A866

Basic Characteristics of Plasma Thruster using ICR Heating in Sheet Plasma A. Tonegawa

A809

Experimental Evaluation of the Micro Water Thruster Recovering Waste Heat of a Spacecraft K. Nishi

Field Emission / **Colloid Thrusters**

A803

Probe study on ion beam and backflow for different electric propulsion technologies V. Hugonnaud

A857

Molecular Dynamics Simulations of Nanodroplet Break-up for Ionic Liquid Electrospray Thrusters Y. Takao

Audimax

Audimax

Audimax

Audimax

32

Wecome Speech

Lunch Break & Poster Session

Panel Discussion \rightarrow see page 10

David C. Byers Memorial Lecture → see page 10

Plenary Lecture with Agencies → see page 10

	Material Technology Cathodes, Gimbals	Field Emission / Colloid Thrusters	Hall Thrusters 1	Hall Thrusters 2	Ion Thrusters
	HS6	SR5	SR6	SR2	HS5
	1 st Chair D. Goebel 2 nd Chair G. Beratti	1 st Chair C. Scharlemann 2 nd Chair B. Kristinsson	1 st Chair O. Duchemin 2 nd Chair M. Saravia	1 st Chair S. Mazouffre 2 nd Chair W. Villafana	1 st Chair H. Leiter 2 nd Chair H. Takegahara
14.00	A299 The Effect of Anode Position on Operation of a 25-A class Hollow Cathode S. Hall	A149 Development of Ionic Liquid Electrospray Thrusters with a Massive Emitter Array for Higher Thrust Density Y. Takao	A129 Hybrid Data-Driven and Physics-Based Model for Plasma Turbulence in a Hall Effect Thruster <i>B. Jorns</i>	A532 Spatiotemporally Resolved Ion Velocity Distribution Measure- ments in the 12.5 kW HERMeS Hall Thruster V. Chaplin	A154 Three-Dimensional Parti- cle Simulations of Electron Extraction for a Miniature Microwave Discharge Neutralizer Using Water as the Propellant Y. Sato
14.15	A300 The Effect of a Hall Thruster-like Magnetic Field on Operation of a 25-A class Hollow Cathode S. Hall	A173 Laboratory Demonstration of a Staging System for Electrospray Thrusters <i>O. Jia-Richards</i>	A147 Modular Comprehensive Modeling of Plasma Behavior in Hall Thrusters <i>T. Andreussi</i>	A531 Ion Velocity Measure- ments in the Magnetically Shielded Miniature Hall Thruster (MaSMi) Using Laser-Induced Fluores- cence V. Chaplin	A309 Lifetime Evaluation of Microwave Discharge Neutralizer using Numerical Analysis <i>N. Hiroike</i>
14.30	A557 Development of a Microwave Discharge Cathode for a 200 W Class Hall Thruster T. Morishita	A225 Colloid Micro-Thruster (CMT) Component Development Testing Towards Meeting LISA Mission Requirements <i>N. Demmons</i>	A204 Model for the Increase in Thruster Efficiency from Cross-Channel Coupling in Nested Hall Thrusters L. Su	A513 Charge Exchange Collision in the Plume of a 200 W Laboratory Hall Thruster <i>T. Kerber</i>	A218 Numerical study of microwave discharge ion thruster μ10 Y. Yamashita
14.45	×	A372 Pure Ionic Electrospray Extractor Design Optimization <i>R. Antypas</i>	A459 Magnetic Circuit Optimization for Hall Thrusters Design <i>C. Ferrato</i>	A220 Study on the Influence of Electron Conduction Paths on the Ignition Process of Hall Thruster W. Li	×

Pulsed Plasma	Commercial						
Thrusters	Propulsion Needs						
SR4	HS2						
1st Chair K. Polzin	1 st Chair V. Hruby						
2 nd Chair M. Kazeev	2 nd Chair F.Hey						
A185	A303						
A Performance Comparison of	Versatile Xenon Flow Controller						
solid Propellants in a Surface Arc	for Extended Hall Effect Thruste						
Thruster: Sulfur and Teflon	Power Range						
S. Shimhanda	G. Lenguito						
A556 Performance Evaluation and Development of Air Bearing Thrust Measurement System of Surface Arc Thruster K. Hiraka	A721 Development of an additively manufactured mass, volume and cost optimised fuel tank for microsatellite propulsion systems MiniTank A. Haque						
A616 Development of Pulsed Plasma Thruster for a Pico-Satellite M. Sammut	A456 Progress in Automated System Design by Evolutionary Algo- rithms <i>M. Ehresmann</i>						
A899	A253						
Fiber-fed Pulsed Plasma Thruster	An overview of French electric						
(FPPT) for Small Satellites	propulsion activities at CNES						
D. Carroll	<i>C. Boniface</i>						

33

Global Strategic vestments

3

Chair J. Gonzalez del Amo Chair M. Andrenucci

89

tivities of the H2020 Strategic Performance Scaling of search Cluster on Space ectric Propulsion (2015-2019) Gonzalez del Amo

HS3

Innovative

Concepts

1st Chair J. Brophy 2nd Chair K. Takahashi

A202

Drag-Modulated Plasma Aerocapture C. Kelly

11

e Importance of Electric pulsion to Future Exploration he Solar System assady

A254

Fluid-kinetic propulsive magnetic nozzle model in the fully-magnetized limit M. Merino

Theoretical scaling laws for water-vapor propellant thrusters

53

plication of Solar Electric pulsion in the Emerging tellite Servicing Industry Glogowski

76

A. Sheppard

A420

A717 opulsion subsystem for a stand one interplanetary CubeSat Feili Feili Thrusters

J. Woods

	Material Technology Cathodes, Gimbals	Field Emission / Colloid Thrusters	Hall Thrusters 1	Hall Thrusters 2	Ion Thrusters		
	HS6	SR5	SR6	SR2	HS5		
15.00	A629 Development of a C12A7 Electride Hollow Cathode and Joint Operation with Plasma Thrusters <i>C. Drobny</i>	A284 Micro-Newton Electros- pray Thrusters for China's Space-Borne Gravitational Wave Detection Mission (Tian Qin) P. Song	A470 Theoretical Models of Suppression of Instabil- ities in Hall Thruster by Shear of Magnetic Field <i>A. Kapulkin</i>	A276 Experimental Investiga- tion of the Implications of Nesting Multiple Hall Thruster Channels S. Cusson	A272 Hybrid-PIC Simulation of Back-sputtered Carbon Transport in electric propulsion test facility <i>H. Zheng</i>		
15.15	A644 Comparison of the thermi- onic emission properties of LaB6 and C12A7 <i>N. G. Kottke</i>	A344 Characterisation of electrospray microemit- ters fabricated by planar and 3D photolithography <i>T. Henning</i>	A278 A Comparison of Possible Mechanisms for Facility Effects on Hall Thruster Operation <i>T. Matlock</i>	A288 EP system development and functional validation tests for the Electra GEO satellite V. Garcia	A302 EMC considerations for RIT engines based on 3D full- wave field simulation of electromagnetic emission of their RF coils T. Sommavilla		
15.30	A482 Development of High Current LaB6 hollow Cathode W. Yang	A650 A Novel Variable Mode Emitter for Electrospray Thrusters <i>P. Wright</i>	A306 A comprehensive xenon collisional-radiative model of atomic and ionic excited levels for Hall thruster <i>YF. Wang</i>	A142 Hall thrusters develop- ment at Exotrail: pres- entation and experimental investigation <i>A. Gurciullo</i>	A496 Numerical simulation of plasma discharge in RF ion thruster <i>R. Rakhimov</i>		
15.45	A695 Featherweight Heaterless Hollow Cathode Charac- terization <i>M. Mooney</i>	×	×	×	×		
	1 st Chair V. GGarcia 2 nd Chair C. Neugebauer	1 st Chair D. Krejci 2 nd Chair A. Hsu	1 st Chair J. Boeuf 2 nd Chair X. Yi	1 st Chair S. Weiss 2 nd Chair S. Arali	1 st Chair S. Ciaralli 2 nd Chair -		
16.00	A768 Evaluation of lodine Compatible Hollow Cathode Configurations S. Thompson	A223 Direct Thrust Meas- urement and Plume Characterization of a Porous Electrospray Thruster C. Ma	A762 Stationary Profiles and Axial Mode Oscillations in Hall Thruster A. Smolyakov	A791 Performance Comparison of a 2 kW Hall Thruster with Heaterless Cathodes Mounted on the Outer Pole Piece and on the Thruster Centerline <i>T. Andreano</i>	A905 Analytical and numerical simulation of Ring Cusp Discharge Chamber F. Cannat		
16.15	A802 Diagnostic analysis of a 30 A heaterless hollow cathode A. Daykin-Iliopoulos	A471 Development and Characterization of an Ionic Liquid Electrospray Thruster with a Porous Metal Blade Array X. Liu	A681 Status of Research Activities on Electric Propulsion at CIRA F. Battista	A441 Development Status of 6-kW-class Hall Thrusters at JAXA I. Funaki	A367 Plasma characteristics in the backflow region of ion thruster plumes using kinetic and electron fluid models D. Levin		

Pulsed Plasma Thrusters	Commercial Propulsion Needs								
SR4	HS2								
A657 A Vacuum Arc Ion Thruster for SmallSat Applications J. Kolbeck	A826 HEMPT-Strategy to address current and future Space Market J. Degremont	F F							
A860 Optical measurements of ablation process of double-cylindrical pulsed plasma thruster <i>T. Inaba</i>	A212 The Benefits of Continued Advances in the Propulsive Capability of the Electric GEO Communications Satellite J. Trescott	E S F							
	A210	A							

EP orbit raising: environmental effects impact on satellites, modelling and challenges B. Zitouni

A883 More added value? - an investigation on the commercial benefit of different EP technologies for orbital propulsion instancing H2020's GIESEPP C. Dietz 1st Chair E. Bosch

2nd Chair F. Pintó Marín

Development of a 100 mN

Horizontal Torsion Balance

A790

B. Seifert

2nd Chair B. Che A421 Performance and Efficiency of Electric Solid Propellant in a

Pulsed Plasma Thruster M. Glascock

1st Chair J. Kolbeck

A659 A413 Micro-cathode arc thruster improvement by the second MPD stage D. Zolotukhin

Design and testing of a μN - mN torsional thrust balance with wireless microwave power transmission K. Swar

34

Monday 16

Global Strategic Investments

SR3

A275 High power electric propulsion: MARS plus EUROPA - already beyond 2025! F. Jansen

Innovative Concepts

HS3

1st Chair M. Tajmar 2nd Chair J. Polk

A176

A243

Effects of magnetic shielding on the performance of Multi-cusped field thruster J. Geng

Electric Propulsion Pointing

Mechanism EPPM for the Spacebus Neo Platform

C. Neugebauer

A418

Electric Propulsion for Small Satellites: A Case Study P. Lascombes

A607

VENUS - Updates on Technological Mission Using IHET D.Lev

A398

A547

Modeling, Simulation and Testing of a Magnetically Enhanced RF Plasma Source for a High Power Electromagnetic Thruster X. Wen

Electric Propulsion Activities at the UCLA Plasma Space Propulsion Laboratory R. Wirz

A564

Experimental Study of Traveling Wave Plasma Acceleration and Optimization of Magnetic Field Structure for Electrodeless RF Plasma Thruster Y. Oshio

A766

Design of an Experiment for Com-pression and Nozzle Expansion of a Field-Reversed Configuration for Advanced Space Propulsion P. Turchi

	Material Technology Cathodes, Gimbals	Field Emission / Colloid Thrusters	Hall Thrusters 1	Hall Thrusters 2	Ion Thrusters
	HS6	SR5	SR6	SR2	HS5
16.30	A890 Characterization of a Fixed-Volume Release System for Initiating an Arc Discharge in a Heaterless Hollow Cathode <i>R. Ham</i>	A522 Performance of a Fully Conventionally Machined Liquid-lon Electrospray Thruster Operated in PIR <i>M. Natisin</i>	A241 PPS®X00 Hall Thruster Development Status at Safran J. Vaudolon	A342 Parametric study of 1,5- and 2.5-kW Hall Thrusters with an external discharge zone A. Lovtsov	A529 Study of Ion Thruster Backflow Characteristcs with Neutralization Using Kinetic PIC-DSMC D. Levin
16.45	A422 The development of the Integrated Thruster Unit ITU100 and ITU140 A. Zarakovskiy	A787 Reconstructing Elec- trospray Plume Current Spatial Distributions using Computed Tomography D. Courtney	A655 SITAEL HT100 Thruster, Full Ground Qualification T. Misuri	A392 Laboratory tests of 10.5kW Hall thruster with external layer A. Shashkov	A804 Theoretical and Experi- mental assessment of Ion Extraction phenomena <i>M. Mallon</i>
17.00	A289 Development and Qualification of an Electric Propulsion Thruster Orientation Mechanism for the Electra GEO satellite V. Garcia	A794 Investigation of Electros- pray Plume Composition during Voltage Transients <i>E. Petro</i>	A825 Development status of SITAEL's 20kW class Hall thruster <i>T. Andreussi</i>	A740 Performance of the Aurora Low-Power Hall Effect Thruster J. Sommerville	A612 Elegant Approach for solving the Conservation Laws in Global Modelling of Radio-Frequency Ion Thrusters A. Reeh
17.15	A840 Research and develop- ment of radio-frequency cathode-neutralizer P. Smirnov	A590 Interaction of Droplets in Electrospray Plumes <i>M. Davis</i>	A885 SITAEL'S HT400 Hall-Effect Thruster for Constellation Applications <i>T. Misuri</i>	A910 Performance, Stability, and Wear Characteriza- tion of a Sub-Kilowatt Hall Thruster H. Kamhawi	A699 Three-dimensional simulation of ion thruster plume-spacecraft interaction using EX-PWS <i>H.Zheng</i>
17.30	A477 CNT-based cold electron source for space applica- tions on nano-satellites <i>P. Laufer</i>	×	A193 The 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS) <i>R.Hofer</i>	A216 Performance of a 100-Watt Radial Scaled Thruster with Anode Layer A. Olano Garcia	A491 Studying the formation and neutralization of an ion thruster plume with EP2PLUS J. Perales-Díaz
17.45	×	×	A266 A 30-kW Class Magneti- cally Shielded Nested Hall Thruster S. Cusson	A410 Mechanism Behind the Dependence of Thrust on Facility Backpressure and Implications on the Operation of the SPT-140 Onboard the Psyche Mission <i>I. Mikellides</i>	A854 Neutral Density Simulation in the Grid Region of Ion Thrusters using the ffx Ion Optics Code J. Williams

Pulsed Plasma	Commercial					
Thrusters	Propulsion Needs					
SR4	HS2					
A662	A784					
Experimental Analysis of Cusped	TIDBIT - Thruster In-Space					
Magnetic Field Focusing on	Diagnostics with Bus Integrated					
Vacuum Arc Thrusters	Telemetry					
<i>M. Laterza</i>	T. Matlock					
A798	A211					
An investigation of alternative	Thrusters modelling, propellant					
propellants for pulsed plasma	choice and plume expansion:					
thrusters	openPlumeEP capabilities					
W. Y. L. Ling	<i>B. Zitouni</i>					
A554	A123					
Ignition Capability of Pulsed	Cryopumping Challenges of					
Plasma Thruster with Green	EP-Propellants in DLR's Electric					
Liquid Propellant	Propulsion Test Facility					
J. Aoyagi	A. Neumanni					
A898	A796					
Micro-Cathode Matrix Arc	Development of Propulsion					
Thrusters- A Modified Approach	Testing and Integration Facilities					
to Micro-Cathode Arc Thrusters	at Canon Electronics					
<i>K. Daniels</i>	W. Hatakeyama					
A321 Experimental Study on Ignition Reliability of Pulsed Plasma Thrusters X. Liu	A656 Inter-Laboratory Comparison: Tests of a single thruster in two different facilities, on two different thrust balances F. G. Hey					
A536	A653					

J. Geng

University of Michigan's Upgraded Large Vacuum Test Facility E. Viges The study on the lifetime of the micro cathode arc thruster

36

Monday 16

Global Strategic Investments

Innovative Concepts

SR3	HS3
×	A785 Electromagnetic Propulsion Using Non-Ionized Dipole Gases <i>M. Micci</i>
×	A848 Low-Field Mode Transitions in a Spiral-Antenna Helicon Thruster J. Little
×	A852 Laboratory demonstration of a bidirectional helicon plasma thruster for space debris removal <i>K. Takahashi</i>
×	A933 Lodine as propellant for electric propulsion: optical measurements of I density and temperature, comparisons to a global model <i>F. Marmuse</i>
×	×

	Material Technology Cathodes, Gimbals	Field Emission / Colloid Thrusters	Hall Thrusters 1	Hall Thrusters 2	Ion Thrusters	Pulsed Plasma Thrusters
	HS6	SR5	SR6	SR2	HS5	SR4
18.00	×	×	×	A714 Impact of Facility Pressure on the Wear of the NASA HERMeS Hall Thruster J. Frieman	A834 Development of a 3D ion optics modelling code F. Guarducci	A661 Influence of Insulator Geometry on Vacuum Arc Thruster Lifetime <i>M. Laterza</i>
18.15	×	×	×	A630 Data-driven Models for the Effects of Background Pressure on the Operation of Hall Thrusters <i>M. Byrne</i>	×	A169 Predicting Pulsed Plasma Thruster Performance with Deep Recurrent Networks P. Shaw
18.30	×	×	×	A664 Test Results of ExoTerra's Halo Electric Propulsion Module <i>M. Vanwoerkom</i>	×	A893 Pulsed Plasma Acceleration Modeling in Detonation and Deflagration Modes K. Polzin
18.45	×	×	×	A713 Variation in Ion Acceleration Character- istics of the HERMeS Hall Thruster during Magnetic Optimization <i>W. Huang</i>	×	×
19.00	Session End					

38

Monday 16

Global Strategic Investments

Commercial

HS2

A847

M. Crofton

Propulsion Needs

Improved Pumping Speed of Custom Cryopumps for Electric Propulsion Vacuum Facility

Innovative Concepts

SR3	HS3
×	×
×	×
×	×
×	×

	ł	•	÷		•	•									
				/											
÷.															

	Material Technology Cathodes, Gimbals	Field Emission / Colloid Thrusters	Hall Thrusters 1	Hall Thrusters 2
	HS6	SR5	SR6	SR2
	1 st Chair S. Mazouffre 2 nd Chair S. Thompson	1 st Chair D. Courtney 2 nd Chair B. Seifert	1 st Chair T. Matlock 2 nd Chair H. Watanabe	1st Chair R. Hofer 2 nd Chair K. Komurasaki
09.00	A628 Experimental characterization of the attachment length in orificed hollow cathodes <i>PY. Taunay</i>	A213 Quantitative mapping of the mechanisms affecting electros- pray thruster lifetime A. Collins	A140 Development of a 1.5KW High Specific Impulse Magnetic Shielded Hall Thruster A. Mishra	A879 SITAEL's Magnetically Shielded 20 kW Hall Thruster Tests <i>T. Andreussi</i>
0.00	A663 Two-Photon Absorption Laser Induce Fluorescence (TALIF) of Neutral Xenon Density in a Barium Oxide Hollow Cathode Plume <i>T. Wegner</i>	A368 Resolving electrospray emission modes using high-speed current measurements <i>N. Uchizono</i>	A274 High Throughput 1.5 kW Hall Thruster for Satcoms S. Zurbach	A591 Preliminary tests of HIKHET laboratory model at IPPLM <i>M. Jakubczak</i>
00.00	A689 Fiber Coupled Cavity Enhanced Thomson Scattering Diagnostic for Use in Electric Propulsion Facilities A. Friss	A571 Spatially-Resolved Electrospray Plume Current and Mass Flux Measurements and Analysis <i>A. Thuppul</i>	A901 Development of the High Voltage Hall Accelerator Propulsion System H. Kamhawi	A343 Effects of Thrust Noise on Drag-Free and Attitude Control System K. Cui
	A760 5-100 A LaB6 Hollow Cathodes for High-Power Hall Thrusters <i>G. Becatti</i>	A892 Characterization of Electrospray Thruster Electrode Overspray and Backspray C. Marrese-Reading	A651 The Application of an Advanced Electric Propulsion System on the NASA Power and Propulsion Element (PPE) D. Herman	A377 Mini-CHT powered Formation Flying Mission for Magnetic Reconnection Research in Space J. Simmonds
)	A427 Mode Transition in a LaB6 Hollow Cathode for Electric Propulsion Systems for Small Satellites <i>GC. Potrivitu</i>	A909 Microfluidic and materials improvements in the ion Electrospray Propulsion System J. MacArthur	A282 Overview of the Ascendant Sub-kW Transcelestial Electric Propulsion System (ASTRAEUS) <i>R. Conversano</i>	×
)	A428 Systematic Testing of Improved Designs of Miniaturized LaB6 Hollow Cathodes for Electric Propulsion Systems for CubeSats and Small Satellites <i>GC. Potrivitu</i>	×	A283 Development Acceptance Testing of the Thruster Compo- nent of the Ascendant Sub-kW Transcelestial Electric Propulsion System (ASTRAEUS) <i>R. Conversano</i>	×
)	A369 Lithium Hollow Cathode for a Very High Isp Interstellar Precursor Ion Thruster D. Goebel	×	A873 Development of a low power HEMP Thruster EVO R. Heidemann	×
)) .	A371 High Current Hollow Cathode for the X3 100-kW Class Nested Hall Thruster <i>G. Becatti</i>	×	A878 HT5k Thruster Unit Development History, Status and Way Forward <i>T. Andreussi</i>	×

Ion Thrusters	Pulsed Plasma Thrusters	Innovative Concepts	Power Processi Developments
HS5	SR4	HS3	SR3
1 st Chair E. Bosch 2 nd Chair D. Feli	1 st Chair T. Schönherr 2 nd Chair M. Glascock	1 st Chair J. Cassady 2 nd Chair J. Woods	1 st Chair D. Lev 2 nd Chair C. Roessler
A678 Global model of a magnetized ion thruster with xenon and iodine <i>R. Lucken</i>	A497 Investigation on the Discharge Arc Behaviour of an Asymmetric Electrodes Pulsed Plasma Thruster Z. Zhang	A361 Directed-Energy Propulsion Architecture for Deep-Space Missions with Characteristic Velo- cities of Order 100 km/s J. Brophy	A187 Study of Operation of Power and Propulsio System based on Cli Brayton Cycle Powe Conversion Unit and Electric Propulsion A. V. Karevsky
A831 Investigation on Alternative Propellants for Gridded Ion Engines <i>N. Fazio</i>	A108 Analysis of Distributed Energy Release Charac- teristics in an Ablative Pulsed Plasma Thruster <i>L. Yang</i>	A458 Hybrid Electric Propulsion System on the Basis of SPT and PPT <i>M.Kazeev</i>	A270 Electric Propulsion Mission Design with Minimal Solar Cells Radiation Degradation A. Starchenko
A862 Integrated Vlasov-Fully Kinetic PIC Simulations of Plasma Plumes C. Cui	A476 PETRUS 2.0 PPT and its CubeSat-size PPU: Testing and Characteri- zation <i>C. Montag</i>	×	A190 High Efficiency Auto Resonant Converter Anode Power Supply Design, Developmen Testing <i>M. Richards</i>
A882 Influence of Hollow Cath- ode design parameters on Ring Cusp Discharge Chamber performances F. Cannat	A931 Development of an Electrostrictive Force Feeding Subsystem for Liquid Pulsed Plasma Thruster C. Dobranszki	×	A346 Designing, Manufaci and Testing of Powe Processing and Con Unit for a 1.5 kW Hal Effect Thruster S. Neugodnikov
×	×	×	A280 Deep Space Power Processing Unit for Psyche Mission <i>G. Lenguito</i>
×	×	×	A409 Design and Impleme tation of a High Volta Supply for Gridded In Thrusters using moo based control algori <i>C. Roessler</i>
×	×	×	A419 REGULUS: Know-Hou Acquired on lodine Propellant M. Magarotto
 ×	×	×	×

42

Tuesday 17

Power Processing evelopments

187 tudy of Operation of ower and Propulsion stem based on Closed , rayton Cycle Power onversion Unit and lectric Propulsion . V. Karevsky

270

190

346

rocessing and Control nit for a 1.5 kW Hall fect Thruster Neugodnikov

280

eep Space Power rocessing Unit for the syche Mission . Lenguito

409

esign and Implemention of a High Voltage upply for Gridded Ion nrusters using modelased control algorithms Roessler

419

Thruster Concepts

HS2

1st Chair K. Dannenmayer 2nd Chair O. Neunzig

A242

Digital Filtering of Electric Thruster Time Domain Radiated Emissions N. Rongione

A521

Direct thrust measurement of a vacuum arc thruster J. Jarrige

A595

Mechanically amplified milli-Newton thrust balance for RF-thrusters M. Wijnen

A715

esigning, Manufacturing Development of the nd Testing of Power SPACE Lab Thrust Stand for Millinewton Thrust Measurement P. Thoreau

A578

Self-calibration Laser Induced Fluorescence technic in Electric Propulsion plasma diagnosing X. Yang

A863

Laser ablation plasma diagnostics for electrostatic acceleration A. Hamada

A623

Active Wave Injection Diagnostic for Plasma Dispersion Relation Measurements E. Choueiri

A538

Torsional Balance Thrust Measurement Techniques for Small RF Thrusters C. Cretel

IEPC¹⁹ Programme

	Material Technology Cathodes, Gimbals	Field Emission / Colloid Thrusters	Hall Thrusters 1	Hall Thrusters 2
	HS6	SR5	SR6	SR2
	1 st Chair S. Gabriel 2 nd Chair L. Garrigues	1st Chair P. Lozano 2nd Chair V. Hugonnaud	1 st Chair I.G. Mikellides 2 nd Chair S. Zurbach	1 st Chair A. Dominquez 2 nd Chair C. Drobny
00:60	A782 Recent Advances in Low-Current Hollow Cathodes at SITAEL D. Pedrini	A139 Dual-Axis Torsional Thrust Stand for Simultaneous Direct Measurement of Thrust and Mass Loss <i>M. Gilpin</i>	A906 Qualification Status of the PPS® 5000 Hall Thruster Unit O. Duchemin	A156 Convergence of Stochastic Models for Electric Propulsion Plume Simulation S.Araki
09.15	A207 Tests of an iodine-fed rf-neu- tralizer <i>P. Dietz</i>	A445 Development of a Retarding Potential Analyser for Low Density FEEP Thruster Beam Diagnostics N. S. Mühlich	A673 Qualification status of the EP system for Heinrich Hertz satellite (H2Sat) S. Ciaralli	A222 Long-term Scale Characteristics of Low-frequency Oscillation of Hall Thrusters L. Wei
09.30	A896 Ariane Group 5A Neutralizer qualification status <i>M. Berger</i>	A566 Two-dimensional plasma plume density characterisation of the IFM Nano Thruster S. Keerl	A599 Development and Performance Test of a 50 W-class Hall thruster D. Lee	A235 Study of Xenon Wall Accommoda- tion Model and Background Flow During Hall Thruster Ground Test <i>G. Ito</i>
09.45	A297 Performance Testing of a Microwave ECR Neutralizer for the X-EPT Gridded Ion Thruster for Telecoms Applications S. Reeve	A260 MEMS FEEP Thrusters – Minia- turised Liquid Metal Ion Source using Glass Capillaries <i>M. Tajmar</i>	A634 Development and Characteri- zation of a Miniature Hall-Effect Thruster using Permanent Magnets N. Gondol	A263 Numerical Investigations of Background Pressure Effects and Channel Erosion in the SPT-140 Hall Thruster for the Psyche Mission A. Lopez Ortega
10.00	A172 LaB6 hollow cathode work function enhancement: insight into the chemical processes <i>P. Guerrero</i>	A362 Development, Production, and Testing of the IFM Nano FEEP Thruster T. Schönherr	A375 Miniaturized Cylindrical Hall Thrusters J. Simmonds	A247 Numerical Simulations of AFRL EP/TEMPEST experiment using the Thermophysics Unified Research Framework (TURF) <i>L. Brieda</i>
10.15	A245 Plasma model and experimental investigation of a hollow cathode neutraliser A. Gurciullo	A675 The IFM Micro FEEP thruster: a modular design for smallsat propulsion L. Grimaud	A465 Investigation of the possibility to develop competitive small power stationary plasma thruster (SPT) <i>V. Kim</i>	
10.30	A301 Hollow cathode thermal model- ling and self-consistent plasma solution: two step neutralization modelling <i>P. Guerrero</i>	A686 The ESA Earth Observation Pro- gramme activities for the design, development and qualification of the mN-FEEP thruster L. Massotti		A285 Influence of additional electric field on discharge performance of Hall thruster under internal and external cathode position studied by particle-in-cell simulation <i>XF. Cao</i>

Ion Thrusters	Resistojets/ Arcjets	Innovative Concepts
HS5	SR4	HS3
1 st Chair H. Leiter 2 nd Chair M. Mallon	1 st Chair P. P. Upadhyay 2 nd Chair -	1 st Chair P. Turchi 2 nd Chair D. Packan
A356 T7 thruster design and performance J. Perez Luna	A224 Electrostatic Probe Investigation of Very Low Power Arcjet VELARC in IRS and ESA-ESTEC Facilities J. Skalden	A158 Optimum design for the drive-coil of a 5C inductive pulsed pla- thruster and its nume evaluation <i>B. Che</i>
A688 T5 Performance, Indus- trialisation and Future Applications K. Hall	A122 An Efficient Ionization Method for Pressure Up To Thousands of Pascals L. Chang	A191 Effects of Collisional diative Processes wi Relative Drift in Elec: Propulsion Devices <i>R. J. Abrantes</i>
A360 Testing of a 50,000-s, Lithium-fueled, Gridded Ion Thruster J. Brophy	A170 The Development and Qualification of the STAR Resistojet System for Telecommunications Applications <i>F. Romei</i>	A259 Water as an Alternati Propellant for a Next Generation Plasma Propulsion System A. Schwertheim
A811 Development and testing of the NPT30 ion iodine thruster J. Martínez	A786 A 17.8-GHz Ammonia Microwave Electrothermal Thruster for CubeSats and Small Satellites <i>M. Micci</i>	
A383 Development of 50 W class RF gridded ion thruster <i>T. Nguyen</i>	A393 Lifetime Investigations of an Additively Manufac- tured High-temperature Resistojet Heat Exchang- er from Tantalum <i>M. Robinson</i>	A560 Research on Micro Impulse Measureme Technology for Micro Cathode Arc Thruste X. Liu
A446 Development Status of Microwave-ion Thruster M5 for Small and Micro Satellites <i>K. Zhu</i>	A403 Structural effects on the high temperature performance of the Super High Temperature Additive Manufactured Resistojet (STAR) C. Ogunlesi	A633 PIC/fluid/wave simu- lations of the plasma discharge in an ECR plasma thruster A. Sánchez-Villar
A652 Discharge-Mode Testing of the X-EPT Microwave ECR Gridded Ion Thruster for Telecoms Applications D. Hoffman	A631 Effect of structure characteristics on start-up process of an Arcjet thruster Y. Shen	×

Wednesday 18

47

Power Processing Developments

SR3

1st Chair R. Velasco Valencia 1st Chair T. Yamamura 2nd Chair D. Pavarin

A474

Development of a full bridge series resonant radio-frequency Plasma Thruster its numerical generator for optimized RIT operation J.E.Junker

A512

A567

High Voltage Power Supply for T5 Gridded Ion Thruster M. Blaser

and medium power Hall

Effect Thruster

S. Neugodnikov

A575 Development of High Efficiency Power Processing Unit for Hall Thruster

A. Tsybulnyk

A584

Power Processing Unit Activities at Thales Alenia Space in Belgium E. Bourguignon

A729 Rafael's Power Process-Propulsion Systems D.Lev

A888

AIRBUS DS PPU qualification status for HET, GIT and New Space Technologies F. Pintó Marín

Thruster Concepts

HS2

2nd Chair J. Little

A415

Numerical Model of a Magnetically Enhanced M. Magarotto

A460

3D simulations of a magnetized Hall Effect thruster plume F. Cichocki

A564

Design and Manufactur-ing of Control Unit for Iow and Ablation Model for a Vacuum Arc Thruster S. Bai

A573

Numerical Analysis of Plasma Acceleration Driven by Loop Coil in Electrodeless Thruster Y. Yamakawa

A818

Effect of the initial electron distribution function in magnetic nozzle expansions S. Correyero Plaza

A744

A 3D Numerical Study of ing Unit (PPU) for Electric Arcjet Thrusters: Effect of Electrode Configuration on Performance of Arcjet thruster H. Nandyala

A609

Discrete Boltzmann Modeling of Atmospheric Pressure Plasma Jet J. Song

10.45

11.00

11.15

11.30

11.45

12.00

13.30

IEPC¹⁹ Programme

Material Technology Field Emission / Hall Thrusters 1 Hall Thrusters 2 Cathodes, Gimbals **Colloid Thrusters** HS6 SR5 SR6 SR2 A779 A294 A331 An Axisymmetric Direct Kinetic Development of low-power micro EP plasma plume in orbit: Diag-Solver for Simulation of Hollow cylindrical hall thruster "SCHT-1" nostics and analysis correlation Cathode Plasmas T. Ikeda J. Laube A.R.Vazsonyi A452 A805 A776 A639 A Plasma Model for Orificed CLIMB: Exploration of the Van Characterization of a 100 Coupling of an all-electric Allen Belt by CubeSats A-class LaB₆ hollow cathode for spacecraft with its plasma plume Hollow Cathodes high-power Hall thrusters and its environment M. Panelli C. Scharlemann S. Mazouffre S. Hess A914 A724 A627 A833 Validation of a drift diffusion Recent flight data of the IFM Experimental investigations and Simulation of plasma plume performance optimisation of the experiments with Hall Thrusters: model for a hollow cathode Nano Thruster used for LEO orbit S. Gabriel raising Halo thruster on-ground chamber effects on measurements and extrapolation S. Masillo D. Krejci to in-flight situation P. Sarrailh A858 A781 A895 A One-Dimensional model for LISA Colloid Microthruster Thruster Plume and Spacecraft Hollow Cathode Orifice lifetime Interaction Analysis by 3D Technology Development Plan Electrostatic Code for 4.5-kWprediction and Progress Class Hall Thruster F. Bosi J. Ziemer T. Muranaka A473 Parallel codes using particles decomposition and view factor model methods for the particle in cell-Monte Carlo collision (PIC-MCC) simulation on cylinder hall thruster R. Pan Lunch Break **Plenary Lecture** \rightarrow see page 10 The Role of EP in Leo Chaired by M. Walker / R. Spears

1 st Chair 2 nd Chair	
A783	

15.00

A783 Numerical modeling and incoherent Thomson scattering measurements of a 5A cathode with LaB6 emitter L. Garrigues

A196 A336 Droplets emission from FEEP and The research of the modified colloids thrusters: modelling of droplets dynamics and interaction with spacecraft body M. Villemant

1st Chair D. Krejci

2nd Chair L. Massotti

SPT-70 thruster parameters and characteristics A. Markov

1st Chair T. Misuri

2nd Chair A. Mishra

1st Chair P. Peterson 2nd Chair L. Wei

Models

A318 Coupled Simulation of Two-Dimensional Hybrid Hall Thruster

R.Kawashima

Ion Thrusters	Resistojets/ Arcjets	Innovativ Concepts
HS5	SR4	HS3
A143 Development of the Miniature Xenon Ion Thruster with Hollow Cathode Operation S. Samples	× A225 Development Progress of an Adaptable Deorbit System for Satellite Constellations J. Skalden	×
×	A390 Performance Theory and Development of a Resistojet Based Hybrid Electro-Chemical Thruster G. Coral	×
×	×	×
×	×	×
×	×	×

1 st Chair M. Smirnova	1 st Chair M. Micci	1 st Chair T. Schönhe
2 nd Chair V. Kozhevnikov	2 nd Chair J. Skalden	2 nd Chair E. Ahedo
A668 The Analysis of Parameter Sensitivity of Electron backstreaming failure mode for 3-grid system ion thruster Y. Jia	A520 Numerical Investigation of Micro-Cathodic Arc Thruster Lifetime using the PIC-DEM Method <i>L. Brieda</i>	A174 Design and prelimir experiments of the prototype of a 500J inductive pulsed pla thruster X. Li

Wednesday 18

Power Processing Developments

Thruster Concepts

HS2

SR3 A913

Development of a High Voltage Power Process Unit for a CubeSat Electrospray Thruster C. Ma

A930

13kW Advanced Electric **Propulsion System** Power Processing Unit Development E. Soendker

A937

Research on a controlled high voltage power supply for Power Processing Unit Q. Kang

A464

Development of compact high efficiency RF generator for inductive coupled plasma sources A. Surminskii

A795 Numerical Simulation and theoretical analysis of Particle Acceleration in Traveling Magnetic Field Thruster H. S. Kumar

Wednesday

IEPC¹⁹ Programme

	Material Technology Cathodes, Gimbals	Field Emission / Colloid Thrusters	Hall Thrusters 1	Hall Thrusters 2	lon ⁻	Thrusters	Resistojets/ Arcjets	lr C
	HS6	SR5	SR6	SR2	HS5		SR4	Н
15.15	A865 Comparisons between Particle Simulation using IAT Growth Model and Plume Measurements of LaB6 Hollow Cathode <i>K. Kubota</i>	A317 Uncertainty Quantification of Electrospray Thruster Array Lifetime <i>B. Jorns</i>	A660 I2HET: Development of an Iodine-Fed Hall Effect Thruster M. M. Saravia	A648 Multiscale Hybrid Modeling of Unconventional Hall Thrusters M. Laterza	lytic- thrus	ace Modification of Pyro- Graphite Grids for an Ion ster tsunaga	A837 Numerical Rebuilding of Very Low Power Arcjet Thruster VELARC in Test Facilities at IRS and ESA-ESTEC P. P. Upadhyay	A O Fi B
15.30	A874 Fluid model of a Hollow Cathode discharge X. Chen	A526 Colloid Thruster Plume Simula- tions Using a Particle-Particle Model J. Wang	A838 Simulation of an Adaptable Hall Thruster N. Proulx	A281 Plasma Simulations for the Assessment of Pole Erosion in the Magnetically Shielded Miniature Hall Thruster (MaSMi) A. Lopez Ortega	Mode	ertainty Quantification of eled Electron Backstreaming re for the NEXT Ion Thruster	A562 A Chemically Augmented Arcjet Thruster with Exotic Propellants <i>M. Tsuchiya</i>	
15.45	A153 Development of Low-Volt- age-Driven Propellantless Cathodes with High-Current Density Based on Graphene-Ox- ide-Semiconductor Structure <i>R. Furuya</i>	A530 Effect of Aprotic + Protic Mixtures on Electrospray Droplet Fragmentation D. Levin	A902 Performance, Plume, Stability, and Wear Characterization of Three Alternate Magnetic Field Topologies in the Hall Effect Rocket with Magnetic Shielding H. Kamhawi	A364 Particle-In-cell / fluid simulations of a Hall effect thruster account- ing for plasma wall interactions W. Villafana	the N	eling Ion Optics Erosion in IEXT Ion Thruster Using the 2D and CEX3D Codes	A703 Effect of adding water to propellant of a DME arcjet thruster <i>T. Tachibana</i>	A E of no m M
16.00	A214 Radio Frequency Microdischarge Neutralizer F. Filleul	A830 Development of an Electrospray Source Model for Kinetic Plume Modeling <i>E. Petro</i>	A637 Characterisation and Performance Comparison of a Low-Power Hall-Effect Thruster and an Advanced Cusp Field Thruster with Multiple Noble Gases <i>M. Vaupel</i>	A478 The Sputtering Mechanism of Keeper Electrode in Hall Thruster J. Chen	×		×	×
16.15	×	A565 Numerical simulation of electrospray thruster extraction for highly conductive propellants <i>H. Huh</i>	A752 Preliminary Evaluation of Anode-Layer-Type Hall Thruster Performance Using Pulsating Boost Chopper Circuit <i>K. Nagamine</i>	×	×		×	×
16.30	×	A559 Study on Performance of Ionic Liquid Electrospray Thruster in Atmosphere and Vacuum Environment Y. Guo	A563 Impact on Performance and Erosion in Hall Thruster using Argon and Xenon propellant S. Yokota K. Shimamura	×	×		×	×
16.45	×	A788 High-Speed Transient Character- ization of the Busek BET-300-P Electrospray Thruster D. Courtney	×	×	×		×	×
	×	×	×	×	×		×	×
17.00								

Session End → Gala Dinner beginning 18:30

Wednesday 18

Innovative Concepts

HS3

A646

Operation and Performance of a Fully-Integrated ion Electrospray Propulsion System *B. Kristinsson*

A742

Direct Inertial Electrostatic Confinement Propulsion at Low Power Levels *M. Winter*

A761

Experimental demonstration of thrust vectoring magnetic nozzle with multi-axis thrust measurement system *M. Edamoto*

Thruster Concepts

HS2

A537

An Experimental Study of Thrust Dependence on Magnetic Field in an Electrodeless Inductive Plasma Accelerator

A. Tatsuno

A596

Development and Characterization of the Helicon Plasma Thruster Prototype HPT-03 J. Navarro-Cavallé

A647

Optimization of electrothermal microwave plasma thruster for nanosatellites *S. Ivanov*

A855

Performance improvement of a magnetic nozzle helicon plasma thruster *K. Takahashi*

....

A867

Cubesat Test Platform for miniaturized electric propulsion system verification campaign *F. Stesina*

A815

Enabling High-Energy Missions with Nanosatellites by Using Ablative Pulsed Plasma Thrusters *P. Gessini*

A920

The operation of a low-power cylindrical Hall thruster with zinc as the propellant *C. Ryan*

A746

On the Performance of Arcjet Thrusters using Numerical Modeling: A case study of Hydrogen as a propellant D. Akhare

THURSDAY

Material Technology Cathodes, Gimbals	Commercial Propulsion Needs	Hall Thrusters 1	Hall Thrusters 2
HS6	SR4	SR6	SR2
1 st Chair I. Mikellides 2 nd Chair X. Chen	1st Chair J. Trescott 2 nd Chair K. Dannenmayer	1 st Chair C. Boniface 2 nd Chair I. Funaki	1 st Chair R. Heidemann 2 nd Chair T. Hallouin
A249 Comparison of transient behavior in a 20 A hollow cathode in a 9 kW Hall thruster and a stand- alone configuration <i>M. Georgin</i>	A592 The Ariane Group Electric Propulsion Program 2019-2020 H. Leiter	A793 Life Estimation of Hall Thrusters using Multi Spectral Imaging <i>H. Gole</i>	A487 Oscillation analysis in Hall thrusters with 2D (axial-azimuth- al) Particle-In-Cell simulations <i>T. Charoy</i>
A430 Mechanism Analysis of Cathode Low Frequency Oscillation Z. Ning	A926 Overview of Busek EP Thrusters V. Hruby	A408 Terahertz Time-Domain Spectroscopy as an Electric Propulsion Plasma Diagnostic <i>N. Brown</i>	A501 Enhancing Hall Effect Thruster Simulations with Deep Recurrent Networks <i>P. Shaw</i>
A604 Applicability of electride materials for hollow cathodes <i>M. Reitemeyer</i>	A600 Electric Propulsion Develop- ments at Rafael in 2019 D. Lev	A861 Application of Helium Line Intensity Ratio Spectroscopy to Xenon plasma in Penning discharge H. Sekine	A732 Data-Driven Modeling for Nonlinear Dynamics of Phys- ical Phenomena in Hall Effect Thrusters <i>K. Hara</i>
A929 Additively Manufactured Hollow Cathode Keepers with Integral Radiation Shielding <i>M. S. McDonald</i>	×	A516 Hall Thruster Plume Measure- ments of Time Resolved Ion Energy <i>M. Baird</i>	A579 Analysis of the plasma discharge in a Hall thruster via a hybrid 2D code <i>P. Fajardo</i>
A845 Total Sputter Yield Character- ization of Various Spacecraft Materials J. A. Young	×	A308 Electron cross-field transport mechanism observed under the azimuthally inhomogeneous neutral supply in a Hall thruster <i>J. Bak</i>	A613 Boundary conditions for a two-dimensional direct kinetic simulation of a Hall thruster <i>A. Raisanen</i>
A155 Onset criteria for the plume mode oscillation in hollow cathodes <i>M. Georgin</i>	×	A449 On-board Plasma Plume Diagnostics for ETS-9 All-electric Satellite K. Kinefuchi	A619 Operation of a Low Power Hall Thruster with a Shielded Magnetically Configuration L. Garrigues
A667 The neutral gas properties in orifice hollow cathode before its ignition <i>Y. Jia</i>	×	A252 Significant ion acceleration of Xe ions outside the discharge channel in cylindrical Hall thruster plasmas observed by laser induced fluorescence <i>G. Doh</i>	A642 Influence of Magnetic Field Strength on Narrow Channel Hall Thruster Discharge Operating at Very Low Power I. Kronhaus
×	×	A246 Hall Thruster Near-Field Plume Characterization Through Optical Emission Spectroscopy <i>M. Nakles</i>	A720 Numerical studies of the ExB electron drift instability in Hall thrusters <i>F. Taccogna</i>

Ion Thrusters	MPD Thrusters
HS5	SR3
1 st Chair S. Gabriel 2 nd Chair C. Altmann	1 st Chair G. Herdrich 2 nd Chair A. Kitaeva
A287 Non-intrusive measurements of microwave ion thruster by two photon absorption LIF and laser Thomson scattering <i>R. Tsukizaki</i>	A493 Magnetic Field and Current Density Probe for Steady State AF-MPD Thrusters A. Behnke
A337	A551
Estimation of Erosion Rate for Surface Material on HAYABUSA2 by Measurement of Backflow Ions from 10-cm-class Ion Thruster T. Muranaka	Simultaneous Measurement of Cathode Surface Temperature Distribution and Plasma Spatial Distribution in Self-Field MPD Thruster <i>S. Tauchi</i>
A348 A novel optical line-ratio method for measuring the electron parameters in the discharge chamber of xenon ion thrusters X. Zhu	A310 The Experimental Performances of the 100kW MPD Thruster wit Applied Magnetic Field Y. Cong
A396 Optical plasma diagnostics for radio-frequency ion thrusters <i>B. Nauschütt</i>	A759 Characterization and Improve- ment of Thrust Balance for High Power Applied Field MPD Thrusters <i>G. Herdrich</i>
A503 Two-Photon Laser-Induced Fluorescence Diagnostics of a Radiofrequency Ion Thruster: Measurements in Xenon and Krypton <i>C. Eichhorn</i>	A314 Cathode Ablation Performance Applied-Field Magnetoplasma- dynamic <i>G. Wang</i>
A167 Near Field Probe Measurements in the Plume of a NEXT Ion Thruster N. Arthur	A585 Current Advances in Optimiza- tion of Operative Regimes of Steady State Applied Field MPD Thrusters <i>A. Boxberger</i>
A738 Determination of the Beam Divergence of a Gridded Ion Thruster Using the AEPD Platform F. Scholze	A401 Anode Power Deposition in an AF-MPDT with Two Unique Magnetic Field <i>P. Wu</i>
A777 Planar probe array for bidimen- sional mapping of the ion flux profile of a miniaturized ion thruster L. Habl	A588 Experimental study of the discharge characteristic in AF-MPDT ignition <i>Y. Wang</i>

00:60

09.15

09.30

09.45

10.00

10.15

10.30

10.45

Thursday 19

Innovative / Advanced **Propulsion Concepts**

HS3

1st Chair M. Merino 2nd Chair –

A164

Evaluation of anomalous resistiv-ity in a low power magnetic Comparison of waveguide-cou-pled and coaxial-coupled ECR nozzle S. Hepner

A199

Experimental Validation and Performance Measurements of an ECR Thruster Operating on Multiple Propellants R. Moloney

A261

The SpaceDrive Project -EMDrive Thrust Measurements and Analysis M. Tajmar

A262

The SpaceDrive Project - Over-Efforts at TU Dresden M. Tajmar

A271

of Plasma Jet Pack (PJP) Technology A. Blanchet

A290

Characterisation of a Rotational Propulsion Concepts Utilizing Magnetic Levitation with Superconductors O. Neunzig

A292

sion on discharge characteristics and design upgrade for an ECR of IEC thruster Y.-A. Chan

A333

High-Specific-Impulse Operation H2020 MINOTOR: Magnetic in Diverging Magnetic Field Electrostatic Thrusters with Argon Propellant D. Ichihara

Thruster Concepts

HS2

1st Chair S. Peterschmitt 2nd Chair M. Mooney

A188

magnetic-nozzle thruster using a thrust balance S. Peterschmitt

A219

Optimization of a Low Power ECR Thruster Using Pulsed Power and Frequency Mixing Techniques B. Wachs

A267

Development of the hall effect hollow cathode thruster L. Chenguang

A363

Diagnostics and testing view of Revolutionary Propulsion facilities for ionic liquid electrospray thrusters at the Air Force Research Laboratory D. Eckhardt

A417

REGULUS: Iodine Fed Plasma Propulsion System for Small Satellites M. Magarotto

A498

XMET: Design and early testing of Thrust Balance for Propellantless a xenon microwave electrothermal thruster D. Staab

A638

Influence of cathode grid dimen- Analytical plasma modelling thruster operating on water and ammonia propellants E.R. Azevedo

A875

Nozzle Electron Cyclotron Resonance Thruster D. Packan

	Material Technology Cathodes, Gimbals	Commercial Propulsion Needs	Hall Thrusters 1	Hall Thrusters 2
	HS6	SR4	SR6	SR2
11.00	×	×	A387 Study of two different discharge modes in Hall thruster I. Khmelevskoi	A437 3D simulation of rotating spoke in a wall-less Hall thruster K. Matyash
11.15	×	×	×	A726 Development of 1D Magneto-stat- ic Two-Fluid Plasma Simulation of a Hall Effect Thruster K. Hara
11.30	×	×	×	×
11.45	×	×	×	×

Ion Thrusters	MPD Thrusters	I
HS5	SR3	ŀ
A145 Radio-frequency biasing of ion thruster grids T. Lafleur	×	A N r H
A507 A global performance model of Gridded Ion Thrusters E. Ahedo	×	ן ד ד ג
×	×	L L L
×	×	>

14.00 12.00	Lunch Break & Poster Session Plenary Lecture → see page 11 BEPI Colombo - The Mission Presented by Neil Wallace / Chaired by Carsten Scharlemann			
	1 st Chair J. Gonzalez del Amo 2 nd Chair N. Wallace		1 st Chair S. Mazouffre 2 nd Chair Y. Nakayama	1 st Chair N. Yamamoto 2 nd Chair H. Kamhawi
15.00	A824 BepiColombo – A mission overview <i>N. Wallace</i>	×	A841 Non-intrusive Characterization of the Wear of the HERMeS Thruster Using Optical Emission Spectroscopy <i>T. Gray</i>	A733 Coupling Non-Maxwellian View Factor Model to Octree Based Particle VDF Compression for Accelerated Spacecraft-Plume Simulation <i>R. Martin</i>
15.15	A305 BepiColombo - Solar Electric Propulsion System Operations for the Transit to Mercury <i>C. Steiger</i>	×	A932 Internal Probe Studies of a Low Voltage Hall Thruster J. L. Ross	A880 Particle-In-Cell model of the dynamic of the electrons between the two walls of Hall thrusters including realistic secondary electron emission data <i>M. Villemant</i>

^{1st} Chair J. Brophy	1 st Chair A. Boxberger	1°
2 nd Chair E. Petro	2 nd Chair H. Tahara	2″
A175 Design and Experimental Study of an Miniature Ion Thruster J.X. Ren	A195 A Novel Laser Ablation Magneto- plasmadynamic Thruster Y. Zhang	A In fo El de <i>F.</i>
A238	A313	A
Preparation of Space Experiment	Development of High Power	Re
with Electric Propulsion System	Magnetoplasmadynamic	Sp
Based on Radio-Frequency Ion	Thrusters in BICE and Beihang	C.

Y. Li

Thruster aboard the International University

Space Station

R. Akhmetzhanov

56

Thursday 19

Innovative / Advanced Propulsion Concepts

Thruster Concepts

Development of the Xenon

Cold Gas Thruster to Support

All-Electric Propulsion Missions

XMET: Testing of an Argon/ Xenon Microwave Electrothermal

HS2

A941

I. Johnson

A608

Thruster T. Baxter

HS3

A382

Metallic Ion Thruster using Magnetron E-Beam mombardment K. Chen

A385

Thrust Generation in Electrostatic-Magnetic-Hybrid Plasma Thruster A. Sasoh

A475

Design and Performance Test of a RF Plasma Bridge Neutralizer D. Spemann

×

1st Chair M. Winter 2nd Chair –

488

Inductive Plasma Thruster (IPT) for an Atmosphere-Breathing Electric Propulsion System: design and set in operation F. Romano

A500

Review of Dualmode/Multimode Space Propulsion *C.Lyne*

1st Chair S. Rojas Mata 2nd Chair T. Furukawa

A467

Performance Analysis of the Capacitively Coupled Radio Frequency Thruster A. Quraishi

A577

Proposal and Performance Evaluation of Microwave-Driven In-Tube Accelerator Concept *M. Takahashi*

	BepiColombo	Commercial Propulsion Needs	Hall Thrusters 1	Hall Thrusters 2
	HS6	SR4	SR6	SR2
15.30	A606 BepiColombo – The Mercury Transfer Module H. Gray	×	A384 Incoherent Thomson scattering investigations of a low-power Hall thruster in standard and magnetically-shielded configu- rations <i>B. Vincent</i>	A718 Investigation of cross-field electron transport in a 100-W class Hall Thruster using a full particle-in-cell simulation S. Cho
15.45	A494 BepiColombo – MTM and MEPS Integration and Verification <i>K. Kempkens</i>	×	A617 Characterization and perfor- mance measurements of 40 W-class and 100 W-class Hall thrusters <i>T. Hallouin</i>	A582 Experimental characterization and modeling of ID-HALL, a double-stage Hall thruster with an inductive ionization stage Á. Martín Ortega
16.00	A586 BepiColombo - Solar Electric Propulsion System Test and Qualification Approach S. Clark	×	A528 Development Efforts on a Laser Thomson Scattering Diagnostic for Electric Propulsion Applica- tions <i>T. Matlock</i>	A447 Performance Evaluation of a 100-W Class Hall Thruster H. Watanabe
16.15	A615 BepiColombo – MEPS commissioning activities and T6 ion thruster performance during early mission operations <i>R. Lewis</i>	×	A598 Experimental Study on the Influence of Magnetic Field on the Performance of Low-power Hall Thrusters X. Yi	A816 Scaling of spoke rotation fre- quency within an ExB Discharge A. Powis
16.30	×	×	A298 Pole Erosion Measurements for the Development Model of the Magnetically Shielded Miniature Hall Thruster (MaSMi-DM) <i>R. Lobbia</i>	A352 Neutral gas instabilities in Hall thrusters, Part I: Measurements E. Dale
16.45	×	×	×	A432 Driving Low Frequency Oscilla- tions in Hall Thruster <i>Y. Raitses</i>

Ion Thrusters	MPD Thrusters	l F
HS5	SR3	ŀ
A239 Atmospheric Ramjet Thrust Unit on the Base of High-frequency Ion Thruster V. Kozhevnikov	A542 Applied-Field MPD Thruster with High Current Heater-less Hollow Cathode J. Yamasaki	
A240 Characteristics of Radio-Fre- quency Ion Thruster with an Additional Magnetic Field in the Ionization Area V. Kozhevnikov	A872 Development of a 10-30 kW Augmented Field MPD Thruster at SITAEL A. Kitaeva	
A339 Ring Cusp Ion Thruster IT-200PM A. Lovtsov	A450 Performance of Applied Field MPD Thruster with Various Propellants S. Ide	
A574 Test Campaign on the novel Variable Isp Radio Frequency Mini Ion Engine <i>M. Smirnova</i>	A870 Plasma Plume Characteristics of Cluster Operation of Self-Field Magnetoplasmadynamic Thruster Y. Murayama	A 1 s J
A797 Exprimental studies on the effect of the magnetic field and the electrical potential inside the water ion thruster Y. Ataka	A329 Research on the 500kW Class Superconducting Strong Magnetic Field High Power Magnetoplasmadynamic Thruster Technology <i>C. Zhou</i>	A T F C E
A806 A Nouvelle Neutralization Concept for RIT-µX Miniaturized Radio Frequency Ion Thruster Systems H. Leiter	A801 Business Cases and System Architecture for Superconduc- tor-based Applied Field Magneto Plasma Dynamic Thrusters M. La Rosa Betancourt	L L V t n

58

Thursday 19

Innovative / Advanced Propulsion Concepts

IS3

4552

Interaction of Ultraviolet Light-emitting Diodes and Solid Polymers for Micropropulsion Applications I. Horisawa

A605

Hybrid Electric Propulsion System based on Water lectrolysis I. Harmansa

A621

Advanced Cusp Field Thruster with a 3D-printed discharge channel - Performance with lodine and Xenon M. Vaupel

4692

13kW Advanced Electric Propulsion Flight System Development and Qualification .Jackson

A712

The SpaceDrive Project -Progress in the Investigation of the Mach-Effect-Thruster Experiment M. Monette

A774

Development of a deployable vacuum arc thruster system for the post-mission disposal of micro/nano satellites M. Kim

Thruster Concepts

HS2

A594

Indirect electrothermal acceleration of a cold gas jet through interaction of an arcjet exhaust flow for space propulsion applications Y. Arai

A610

Informing the design of pure-ion electrospray thrusters via simulation of the leaky-dielectric model with charge evaporation X. Gallud Cidoncha

A643

Physics and performance of the Alternative Low Power Hybrid Ion Engine (ALPHIE) for space propulsion J. González

A775

Azimuthal Induced Current Formation and Ion Acceleration in an Inductive Radiofrequency Plasma Thruster H. Sekine

A829

Two-dimensional Full Particle-In-Cell Simulation of Magnetic Sails in Formation Flight A. Wada

A903

An experimental revisit of plasma phenomena on Helicon Plasma Thrusters J. Navarro Cavalle

Thursday

Material Technology Commercial Hall Thrusters 1 Hall Thrusters 2 **Cathodes**, Gimbals **Propulsion Needs** HS6 SR4 SR6 SR2 A209 A354 Hall Thruster Erosion Meas-Neutral gas instabilities in Hall 17.00 urement by Time-Resolved thrusters, Part II: Theory Cavity-Ring Down Spectroscopy E. Dale Y. Egawa A632 A332 Influence of double-stage operation on breathing oscilla-Numerical simulation and 17.15 experimental research on low power Hall thruster with long life tions and rotating spokes in the ID-HALL thruster Y. Ding A. Guglielmi A749 A433 Use of electrostatic probes for Prediction of liner erosion and 17.30 characterization of the electron life estimation of Stationary Plasma Thrusters using Machine cross-field current in ExB plasmas Learning Y. Raitses A. Mishra A323 Experimental study on the effect of propellant asymmetrical 17.45 distribution on plasma potential distribution in a Hall effect thruster M. Ding 18.00 18.15 Session End

Ion Thrusters **MPD Thrusters** Innovative / Advanced **Propulsion Concepts** HS5 SR3 HS3 A808 A886 The RIT 2X High Performance Ion Development Roadmap of Thruster System Qualification SITAEL's RAM-EP System Program T. Andreussi M. Berger A842 A293 Charge State Thrust Correction Factor for NEXT: DART Mission Back-vacuum Retarding Potential Analyzer for Investigation of M. Crofton IEC plasma properties Y.-A. Chan A844 A434 Beam Plasma Expansion of a Deposition Rate Measurements in NEXT Ion Engine Plume for DART Helicon Plasma Source Mission Z. Zhang J. Young A853 A448 Modeling and Optical Diagnos-tics of Iodine Fed Helicon Type NEXT Single String Integration Tests In Support of the Double Thrusters by a Detailed Global Model (DGM) Asteroid Redirection Test Mission R. Thomas K. Katsonis A859 A682 Experimental Characterization of A Detailed Global Model for Modeling and Optical Diagnos-tics of Low Power Propulsion Devices Fed by CO2 the Microwave-Discharge Water Ion Thruster for CubeSats Y. Nakagawa C. Berenguer

60

Thursday 19

Thruster Concepts

HS2

A365

RF Power - Plasma Coupling Experimental Results in a Helicon Plasma Thruster Prototype V. Gómez

A940

A thruster using magnetic reconnection to create a highspeed plasma jet S. Bathgate

Thursday

FRIDAY

	Hall Thrusters 1	Propellant Storage / Feed Systems	Mission
	HS6	SR5	HS2
	1 st Chair T. Andreussi 2 nd Chair Ya. Hu	1 st Chair P. Barbier 2 nd Chair H. Liu	1 st Chair D. Oh 2 nd Chair N. Wallace
00:60	A665 Plasma fluctuations measurements in a Hall Thruster N. Yamamoto	A601 Innovative Xenon/Krypton FMS (Feed Man- agement System) for Electric Propulsion <i>P. Barbier</i>	A192 Development of the Psyche Mission for NASA's Discovery Program D. Oh
09.15	A687 Axial-azimuthal high-frequency instability modes in a Hall thruster fluid model <i>E. Bello-Benítez</i>	A400 Development of Porous-Metal-Restrictor Based Xenon Flow Control Modules G. Hang	A244 Electric Propulsion for the Psyche Mission S. Snyder
09.30	A454 Effect of magnetic field configuration on discharge characteristics in permanent magnet thrusters with cusped field S. Liang	×	A654 Sitael HT100 Missions: uHETSAt and PLATINO T. Misuri
09.45	A593 Simulation of radial electron dynamics in a Hall effect thruster A. Dominguez-Vazquez	×	A138 Status Update on the Electric Propulsion Subsystem of TURKSAT6A Communication Satellite B. C. Aydin
10.00	A479 Predicting secondary electron emission rate in Hall Effect Thrusters A. Tavant	×	A927 Mars Sample Return - Earth Return Orbiter: ESAs next Interplanetary Electric Propulsion Mission Concept O. Sutherland
10.15	A514 Enhancing thrust by ion-neutral collisions and by oscillating EM fields A. Fruchtman	×	A411 Electric Propulsion Characterisation for a Stand-Alone Mars CubeSat K. V. Mani
10.30	A523 Effects of large scale structures on anoma- lous transport in PIC simulations of Electron Cyclotron Drift Instability in Hall thrusters A. Smolyakov	×	×
10.45	A543 Towards Predictive Kinetic Simulations of Plasma Thrusters I. Kaganovich	×	×

Diagnostic	Hall Thrusters 2
HS3	HS5
1 st Chair T. Trottenberg	1 st Chair T. Lafleur
2 nd Chair J. Laube	2 nd Chair L. Garrigues
A374 Three-dimensional Vector Measurement of EP Propellant Flow within a Vacuum Chamber Y. Nakayama	A545 Fluid modeling of gradier and transport in ExB plas A. Smolyakov
A517	A691
In-situ microscopy of ion-induced erosion of	New insights into electro
plasma-facing surfaces	azimuthal drift in a Hall et
A. Ottaviano	K. Hara
A258	A569
Thrust measurements using plasma pressure	Assessment of the therm
measurements in the plume: a feasibility	fluid approximations for e
study	thruster plumes
PQ. Elias	Yu. Hu
A887	A304
Recent Advances in Plasma Diagnostics at	Characteristic Transient F
IRS	Effect Thrusters
<i>G. Herdrich</i>	A. Komarov
A345	A758
Development of a Flight Electric Propulsion	Plasma instabilities in cro
Diagnostic Package (EPDP) for EP Satellite	tion: an analysis of the re
Platforms	modes for electron transp
<i>T. Trottenberg</i>	S. Tsikata
A115 Use of Real-Time Spectrum Analysis for EMI Characterization of a SAFRAN Hall Thruster <i>W. Tighe</i>	A843 Experimental Correlation Anomalous Electron Colli Plasma Turbulence in a H <i>Z. Brown</i>
~	~

11.00

Friday 20

nt-drift turbulence smas

on transport due to effect thruster

nodynamic and electrons in plasma

Phenomena of Hall

oss-field configuraelevance of different port

n between ision Frequency and Hall Effect Thruster

Friday

Calling to and from Austria

International country code for Austria +43 the local city code for Vienna is 1 National calls: 0 + city code + number International calls: 00 + country code + city code + number USA calls: 001 + areacode + number

Currency / ATM

The currency used in Austria is the Euro (€). You may exchange foreign currencies at one of the bank institutes next to the university building (See Area Map) Volksbank (Schottengasse 1, Mon-Fri 08:00-12:30); UniCredit Bank Austria (Schottengasse 11, 24h service foyer); Oberbank (Schottengasse 2, Mon-Fri 08:00-12:30). There are also cash machines/ATMs (in Austria called "bankomat") available at these locations. In addition, there is one ATM available inside the university building in the corridor on the ground level leading to the Audimax lecture hall.

Electricity

The electric voltage in Austria is 230 V AC (at 50Hz). You can use your equipment, if the outlet voltage in your country ranges between 220 and 240 V, otherwise you have to use an adapter (100-240 V 50/60Hz). You have to use 2-pin type C or type F plugs for Austrian sockets.

Emergency Calls

Fire brigade: 122, Police: 133, Ambulance: 144, European emergency call: 112

Parking

Parking is very restricted in Vienna, in particular in the area of the city centre. You have to use pre-paid tickets ("Kurzparkscheine"), which are available in four colours (red = 1/2 hour, € 1,05; blue = 1 h, € 2,10; green = 1 ½ h, € 3,15; and yellow = 2 h, € 4,20). These tickets can be purchased at any newspaper kiosk ("Trafik"). The closest "Trafik" to the IEPC 2019 venue is located directly at Schottentor, next to the tram station of lines 43, 44, D, 71. Parking with these tickets is limited to maximum 2 hours. You can also use equivalent electronic tickets by using an app when registering your car on www.handyparken.at. If you want to park for longer you have to use one of the car parks. The closest is the "WIPARK Votivpark-Garage" in the Universitätsstraße (24 hours open, € 4,30 per hour, € 43,-- per day)

Post Office

The closest post office is a 10-15 minute walk located in the Alserstraße: "Postfiliale und Bawag PSK", Alserstraße 31, Mon-Fri 08:00-18:00. Take tram no 43 or 44 for 2 stations from Schottentor.

Public Transportation

This is the most economical way to travel in Vienna – aside from walking. You can purchase tickets online (www. wienerlinien.at) or use one of the vending machines at Schottentor. You can find them downstairs on the way to the subway station of the U2 (violet line), just before entering the escalator down to the platforms. Do not forget to validate your ticket on one of the blue validation machines. The public transportation organisation (Wiener Linien) also provides special tourist tickets called Vienna Card, which combine public transport with reduced fees to the most popular touristic sites in Vienna.

Taxi

The closest taxi stands are located in the Schottengasse (next to the Schottentor) or on Rooseveltplatz (opposite of the hotel "Regina"). You can also call a taxi (+43 1 40 100 or +43 1 31 300). Uber is available in Vienna as well. For ordering taxi to the airport we recommend to use one of the airport taxi shuttle services (>1 day in advance) at a fixed prize (\pounds 30-35), e.g. www.airportdriver.at

Health Service / Hospital

If you need urgent medical care the closest hospital is the "Allgemeine Krankenhaus (AKH) Wien" (www.akhwien.at), 1090 Wien, Währinger Gürtel 18-20.

Supermarkets

The nearest supermarkets within 5-6 minutes walking distance from the IEPC 2019 site are: BILLA (Universitätsstraße 6-8, Mon-Fri 7:40-20:00), and SPAR Gourmet (Schottengasse 7, Mon-Fri 07:30-20:00).

Weather

In September there is significant continental influence. The average temperature is 16°C in the morning, 22°C during the day and 20°C in the evenings. The temperatures during the day can vary between a minimum of 6°C and a maximum of 31°C. While the rain ranges between 26mm and 89mm per month, sunshinehours of up to 260 are possible.

Full Papers

Full Papers will be published online on our website.

Badges

Admission to the conference venue is possible with a valid name badge only. Badges must be used throughout the entire conference and at the official social events. REMEMBER your badge even for excursions or the conference dinner. In case of loss you can obtain a replacement at the registration desk at a fee of \notin 30,00. Return of badges is highly appreciated (in the box located at the registration desk).

Coffee and Lunch Breaks

Food, hot and cold beverages will be served during the conference day and the lunch breaks free of charge. Lunch is available for all participants at two places in the exhibition area (under the arcades).

Special dietary requirements have been communicated to the conference caterer. Please inform the catering personnel, they will help you. Remember to wear your badge during lunch and coffee breaks.

Wardrobe

A wardrobe on the lower level is available for storage of clothes and luggage. It will be open during the session times. Please note that the room will be attended during these times, but storage is at your own risk with respect to loss and damage.

Exhibition Opening Hours

Monday 16 th	09:00 - 17:00
Tuesday 17th	09:00 - 11:00
Wednesday 18 th	09:00 - 17:00
Thursday 19th	09:00 - 17:00
Friday 20th	09:00 - 13:00

Information

In case you need assistance for urgent medical issues or any injuries please contact either the registration desk, a member of the IEPC 2019 staff, or call: +43 664 602 77 17 630

Insurance

The IEPC 2019 cannot accept liability for personal injuries sustained, or for loss or damage of personal belongings either during or as a result of the meeting. Please check the validity of your personal insurance.

Language

The official meeting language is English.

Photographer

The entire conference will be documented by a team of professional photographers.

Registration Desk

Sunday 15 th	16:00 - 18:00
Monday 16 th	08:00 - 17:00
Tuesday 17 th	08:00 - 10:00
Wednesday 18 th	08:00 - 15:00
Thursday 19 th	08:00 - 17:00
Friday 20th	08:00 - 12:00

Smoking at the IEPC 2019

Smoking is not allowed in the entire building of the University of Vienna, with the exception of the Arcaded Courtyard. Thank you for understanding.

WIFI

Free WIFI internet access is available throughout the entire venue. You can find the access code/voucher on the reverse side of your name badge.

Index of Sponsors and Supporters

AAC www.aac-research.at

AC2T www.ac2t.at

Aerojet Rocketdyne www.rocket.com

Ariane Group www.ariane.group

BUSEK Space Propulsion and Systems busek.com

CEST

www.cest.at

COBHAM www.cobham.com/mission-systems

COLUMBUS Ihr Reisebüro GmbH & Co.KG. www.columbus-dmc.com

DDSG Blue Danube Schiffahrt GmbH www.ddsg-blue-danube.at

DISS

www.donau-uni.ac.at/de/universitaet/fakultaeten/ bildung-kunst-architektur/departments/ integrierte-sensorsysteme

ELIAS Music www.eliasmusic.at

ENPULSION www.enpulsion.com

ERPS – Electric Rocket Propulsion Society erps.spacegrant.org

Fachhochschule Wiener Neustadt www.fhwn.ac.at

FFG www.ffg.at FOTEC Forschungs- und Technologietransfer GmbH www.fotec.at

Huazhong University of Science & Technology english.hust.edu.cn

Hot Head Music Club www.hotheadmusicclub.com

Luftballonia www.luftballonia.at

Ortner4Dance www.ortner4dance.com

RAFAEL Advanced Defense Systems LTD. www.rafael.co.il

RUAG www.ruag.com

SAFRAN www.safran-group.com

SITAEL www.sitael.com

The Linde Group www.the-linde-group.com

The Aerospace Corporation aerospace.org

TUBITAK

www.tubitak.gov.tr

Universität Wien www.univie.ac.at

VACCO

www.vacco.com

Wiener Neustädter Stadtwerke und Kommunal Service GmbH www.wnsks-reisebuero.at

iepc2019.univie.ac.at