	Material Technology Cathodes, Gimbals	Field Emission / Colloid Thrusters	Hall Thrusters 1	Hall Thrusters 2	Ion Thrusters
	HS6	SR5	SR6	SR2	HS5
16.30	A890 Characterization of a Fixed-Volume Release System for Initiating an Arc Discharge in a Heaterless Hollow Cathode <i>R. Ham</i>	A522 Performance of a Fully Conventionally Machined Liquid-Ion Electrospray Thruster Operated in PIR <i>M. Natisin</i>	A241 PPS®X00 Hall Thruster Development Status at Safran J. Vaudolon	A342 Parametric study of 1,5- and 2.5-kW Hall Thrusters with an external discharge zone A. Lovtsov	A529 Study of Ion Thruster Backflow Characteristcs with Neutralization Using Kinetic PIC-DSMC D. Levin
16.45	A422 The development of the Integrated Thruster Unit ITU100 and ITU140 A. Zarakovskiy	A787 Reconstructing Elec- trospray Plume Current Spatial Distributions using Computed Tomography D. Courtney	A655 SITAEL HT100 Thruster, Full Ground Qualification <i>T. Misuri</i>	A392 Laboratory tests of 10.5kW Hall thruster with external layer A. Shashkov	A804 Theoretical and Experi- mental assessment of Ion Extraction phenomena <i>M. Mallon</i>
17.00	A289 Development and Qualification of an Electric Propulsion Thruster Orientation Mechanism for the Electra GEO satellite V. Garcia	A794 Investigation of Electros- pray Plume Composition during Voltage Transients <i>E. Petro</i>	A825 Development status of SITAEL's 20kW class Hall thruster <i>T. Andreussi</i>	A740 Performance of the Aurora Low-Power Hall Effect Thruster J. Sommerville	A612 Elegant Approach for solving the Conservation Laws in Global Modelling of Radio-Frequency Ion Thrusters A. Reeh
17.15	A840 Research and develop- ment of radio-frequency cathode-neutralizer <i>P. Smirnov</i>	A590 Interaction of Droplets in Electrospray Plumes <i>M. Davis</i>	A885 SITAEL'S HT400 Hall-Effect Thruster for Constellation Applications <i>T. Misuri</i>	A910 Performance, Stability, and Wear Characteriza- tion of a Sub-Kilowatt Hall Thruster H. Kamhawi	A699 Three-dimensional simulation of ion thruster plume-spacecraft interaction using EX-PWS <i>H.Zheng</i>
	A477	×	A193	A216	A491
17.30	CNT-based cold electron source for space applica- tions on nano-satellites <i>P. Laufer</i>		The 12.5 kW Hall Effect Rocket with Magnetic Shielding (HERMeS) <i>R. Hofer</i>	Performance of a 100-Watt Radial Scaled Thruster with Anode Layer A. Olano Garcia	Studying the formation and neutralization of an ion thruster plume with EP2PLUS J. Perales-Díaz
	×	×	A266	A410	A854
17.45			A 30-kW Class Magneti- cally Shielded Nested Hall Thruster S. Cusson	Mechanism Behind the Dependence of Thrust on Facility Backpressure and Implications on the Operation of the SPT-140 Onboard the Psyche Mission <i>I. Mikellides</i>	Neutral Density Simulation in the Grid Region of Ion Thrusters using the ffx Ion Optics Code J. Williams

Pulsed Plasma	Commercial	
Thrusters	Propulsion Needs	
SR4	HS2	
A662	A784	
Experimental Analysis of Cusped	TIDBIT - Thruster In-Space	
Magnetic Field Focusing on	Diagnostics with Bus Integrated	
Vacuum Arc Thrusters	Telemetry	
<i>M. Laterza</i>	T. Matlock	
A798	A211	
An investigation of alternative	Thrusters modelling, propellant	
propellants for pulsed plasma	choice and plume expansion:	
thrusters	openPlumeEP capabilities	
W.Y.L.Ling	<i>B. Zitouni</i>	
A554	A123	
Ignition Capability of Pulsed	Cryopumping Challenges of	
Plasma Thruster with Green	EP-Propellants in DLR's Electric	
Liquid Propellant	Propulsion Test Facility	
J. Aoyagi	A. Neumanni	
A898	A796	
Micro-Cathode Matrix Arc	Development of Propulsion	
Thrusters- A Modified Approach	Testing and Integration Facilities	
to Micro-Cathode Arc Thrusters	at Canon Electronics	
<i>K. Daniels</i>	W. Hatakeyama	
A321 Experimental Study on Ignition Reliability of Pulsed Plasma Thrusters X. Liu	A656 Inter-Laboratory Comparison: Tests of a single thruster in two different facilities, on two different thrust balances F. G. Hey	
A536	A653	
The study on the lifetime of the	University of Michigan's	
micro cathode arc thruster	Upgraded Large Vacuum Test	

J. Geng

University of Michigan's Upgraded Large Vacuum Test Facility E. Viges

Monday 16

Global Strategic Investments

Innovative Concepts

SR3	HS3
×	A785 Electromagnetic Propulsion Using Non-Ionized Dipole Gases <i>M. Micci</i>
×	A848 Low-Field Mode Transitions in a Spiral-Antenna Helicon Thruster J. Little
×	A852 Laboratory demonstration of a bidirectional helicon plasma thruster for space debris removal <i>K. Takahashi</i>
×	A933 Lodine as propellant for electric propulsion: optical measurements of I density and temperature, comparisons to a global model <i>F. Marmuse</i>
×	×